where vacuuming and/or wet cleaning are not feasible. - (6) Waste disposal. Waste, scrap, debris, bags, containers, equipment, and clothing contaminated with asbestos consigned for disposal, shall be collected, recycled and disposed of in sealed impermeable bags, or other closed, impermeable containers. - (7) Care of asbestos-containing flooring material. - (i) Sanding of asbestos-containing floor material is prohibited. - (ii) Stripping of finishes shall be conducted using low abrasion pads at speed lower than 300 rpm and wet methods. - (iii) Burnishing or dry buffing may be performed only on asbestos-containing flooring which has sufficient finish so that the pad cannot contact the asbestos-containing material. - (iv) Dust and debris in an area containing TSI or surfacing ACM/PACM or visibly deteriorated ACM, shall not be dusted or swept dry, or vacuumed without using a HEPA filter. - (1) Medical surveillance—(1) General—(i) Employees covered. The employer shall institute a medical surveillance program for all employees who are or will be exposed to airborne concentrations of fibers of asbestos at or above the TWA and/or excursion limit. - (ii) Examination by a physician. (A) The employer shall ensure that all medical examinations and procedures are performed by or under the supervision of a licensed physician, and shall be provided without cost to the employee and at a reasonable time and place. - (B) Persons other than licensed physicians, who administer the pulmonary function testing required by this section, shall complete a training course in spirometry sponsored by an appropriate academic or professional institution. - (2) Pre-placement examinations. (i) Before an employee is assigned to an occupation exposed to airborne concentrations of asbestos fibers at or above the TWA and/or excursion limit, a pre-placement medical examination shall be provided or made available by the employer. - (ii) Such examination shall include, as a minimum, a medical and work history; a complete physical examination of all systems with emphasis on the respiratory system, the cardiovascular system and digestive tract; completion of the respiratory disease standardized questionnaire in Appendix D, Part 1; a chest roentgenogram (posterior-anterior 14×17 inches); pulmonary function tests to include forced vital capacity (FVC) and forced expiratory volume at 1 second (FEV(1.0)); and any additional tests deemed appropriate by the examining physician. Interpretation and classification of chest roentgenogram shall be conducted in accordance with Appendix E to this section. (3) Periodic examinations. (i) Periodic medical examinations shall be made available annually. (ii) The scope of the medical examination shall be in conformance with the protocol established in paragraph (l)(2)(ii) of this section, except that the frequency of chest roentgenogram shall be conducted in accordance with Table 2, and the abbreviated standardized questionnaire contained in, Part 2 of Appendix D to this section shall be administered to the employee. TABLE 2.—FREQUENCY OF CHEST ROENTGENOGRAM | Variation floor | Age of employee | | | |----------------------------|--------------------------------|--------------------------------|---------------------------------| | Years since first exposure | 15 to 35 | 35+ to 40 | 45+ | | 0 to 10 | Every 5 years
Every 5 years | Every 5 years
Every 2 years | Every 5 years.
Every 1 year. | - (4) Termination of employment examinations. (i) The employer shall provide, or make available, a termination of employment medical examination for any employee who has been exposed to airborne concentrations of fibers of asbestos at or above the TWA and/or excursion limit. - (ii) The medical examination shall be in accordance with the requirements of the periodic examinations stipulated in paragraph (1)(3) of this section, and shall be given within 30 calendar days before or after the date of termination of employment. - (5) Recent examinations. No medical examination is required of any employee, if adequate records show that the employee has been examined in accordance with any of paragraphs ((1)(2) through (1)(4)) of this section within the past 1 year period. A preemployment medical examination which was required as a condition of employment by the employer, may not be used by that employer to meet the requirements of this paragraph, unless - the cost of such examination is borne by the employer. - (6) Information provided to the physician. The employer shall provide the following information to the examining physician: - (i) A copy of this standard and Appendices D and E. - (ii) A description of the affected employee's duties as they relate to the employee's exposure. - (iii) The employee's representative exposure level or anticipated exposure level. - (iv) A description of any personal protective and respiratory equipment used or to be used. - (v) Information from previous medical examinations of the affected employee that is not otherwise available to the examining physician. - (7) Physician's written opinion. (i) The employer shall obtain a written signed opinion from the examining physician. This written opinion shall contain the results of the medical examination and shall include: - (A) The physician's opinion as to whether the employee has any detected medical conditions that would place the employee at an increased risk of material health impairment from exposure to asbestos; - (B) Any recommended limitations on the employee or upon the use of personal protective equipment such as clothing or respirators; and - (C) A statement that the employee has been informed by the physician of the results of the medical examination and of any medical conditions resulting from asbestos exposure that require further explanation or treatment. - (D) A statement that the employee has been informed by the physician of the increased risk of lung cancer attributable to the combined effect of smoking and asbestos exposure. - (ii) The employer shall instruct the physician not to reveal in the written opinion given to the employer specific findings or diagnoses unrelated to occupational exposure to asbestos. - (iii) The employer shall provide a copy of the physician's written opinion to the affected employee within 30 days from its receipt. (m) Recordkeeping.—(1) Exposure measurements. NOTE: The employer may utilize the services of competent organizations such as industry trade associations and employee associations to maintain the records required by this section. (i) The employer shall keep an accurate record of all measurements taken to monitor employee exposure to asbestos as prescribed in paragraph (d) of this section. (ii) This record shall include at least the following information: (A) The date of measurement; (B) The operation involving exposure to asbestos which is being monitored; (C) Sampling and analytical methods used and evidence of their accuracy; (D) Number, duration, and results of samples taken; (E) Type of respiratory protective devices worn, if any; and (F) Name, social security number and exposure of the employees whose exposure are represented. (iii) The employer shall maintain this record for at least thirty (30) years, in accordance with 29 CFR 1910.20. - (2) Objective data for exempted operations. (i) Where the processing, use, or handling of products made from or containing asbestos is exempted from other requirements of this section under paragraph (d)(2)(iii) of this section, the employer shall establish and maintain an accurate record of objective data reasonably relied upon in support of the exemption. - (ii) The record shall include at least the following: - (A) The product qualifying for exemption; - (B) The source of the objective data; (C) The testing protocol, results of testing, and/or analysis of the material for the release of asbestos; (D) A description of the operation exempted and how the data support the exemption; and (E) Other data relevant to the operations, materials, processing, or employee exposures covered by the exemption. (iii) The employer shall maintain this record for the duration of the employer's reliance upon such objective data. - (3) Medical surveillance. (i) The employer shall establish and maintain an accurate record for each employee subject to medical surveillance by paragraph (l)(1)(i) of this section, in accordance with 29 CFR 1910.20. - (ii) The record shall include at least the following information: - (A) The name and social security number of the employee; - (B) Physician's written opinions; - (C) Any employee medical complaints related to exposure to asbestos; and - (D) A copy of the information provided to the physician as required by paragraph (l)(6) of this section. - (iii) The employer shall ensure that this record is maintained for the duration of employment plus thirty (30) years, in accordance with 29 CFR 1910.20. - (4) Training. The employer shall maintain all employee training records for one (1) year beyond the last date of employment of that employee. - (5) Availability. (i) The employer, upon written request, shall make all records required to be maintained by this section available to the Assistant Secretary and the Director for examination and copying. - (ii) The employer, upon request shall make any exposure records required by paragraph (m)(1) of this section available for examination and copying to affected employees, former employees, designated representatives and the Assistant Secretary, in accordance with 29 CFR 1910.20 (a) through (e) and (g) through (i). - (iii) The employer, upon request, shall make employee medical records required by paragraph (m)(2) of this section available for examination and copying to the subject employee, to anyone having the specific written consent of the subject employee, and the Assistant Secretary, in accordance with 29 CFR 1910.20. - (6) Transfer of records. (i) The employer shall comply with the requirements
concerning transfer of records set forth in 29 CFR 1910.20(h). - (ii) Whenever the employer ceases to do business and there is no successor employer to receive and retain the records for the prescribed period, the employer shall notify the Director at least 90 days prior to disposal of records and, upon request, transmit them to the Director. - (n) Observation of monitoring—(1) Employee observation. The employer shall provide affected employees or their designated representatives an opportunity to observe any monitoring of employee exposure to asbestos conducted in accordance with paragraph (d) of this section. - (2) Observation procedures. When observation of the monitoring of employee exposure to asbestos requires entry into an area where the use of protective clothing or equipment is required, the observer shall be provided with and be required to use such clothing and equipment and shall comply with all other applicable safety and health procedures. - (o) Dates—(1) Effective date. This standard shall become effective October 11, 1994. - (2) The provisions of 29 CFR-1910.1001 remain in effect until the start-up dates of the equivalent provisions of this standard. - (3) Start-up dates. All obligations of this standard commence on the effective date except as follows: - (i) Exposure monitoring. Initial monitoring required by paragraph (d)(2) of this section shall be completed as soon as possible but no later than January 9, 1995. - (ii) Regulated areas. Regulated areas required to be established by paragraph (e) of this section as a result of initial monitoring shall be set up as soon as possible after the results of that monitoring are known and not later than February 8, 1995. - (iii) Respiratory protection. Respiratory protection required by paragraph (g) of this section shall be provided as soon as possible but no later than January 9, 1995. - (iv) Hygiene and lunchroom facilities. Construction plans for change rooms, showers, lavatories, and lunchroom facilities shall be completed as soon as possible but no later than July 10, 1995. - (v) Employee information and training. Employee information and training shall be provided as soon as possible but not later than April 10, - (vi) Medical surveillance. Medical surveillance not previously required by paragraph (l) of this section shall be provided as soon as possible but no later than January 9, 1995. - (vii) Compliance program. Written compliance programs required by paragraph (f)(2) of this section shall be completed and available for inspection and copying as soon as possible but no later than February 8, 1995. - (viii) Methods of compliance. The engineering and work practice controls as required by paragraph (f)(1) shall be implemented as soon as possible but no later than April 10, 1995. - (p) Appendices. (1) Appendices A, C, D, E, and F to this section are incorporated as part of this section and the contents of these Appendices are mandatory. - (2) Appendices B, F, G, H, I, and J to this section are informational and are not intended to create any additional obligations not otherwise imposed or to detract from any existing obligations. (Approved by the Office of Management and Budget under control number 1218-0133) Air # Appendix A to § 1910.1001 [Amended] - 4. Appendix A to § 1910.1001 is amended by the revising the second sentence of the introductory paragraph to read as follows: - * * The sampling and analytical methods described below represent the elements of the available monitoring methods (such as Appendix B of their regulation, the most current version of the OSHA method ID-160, or the most current version of the NIOSH Method 7400). * * * - 5. Paragraph 2. of the section of Appendix A to § 1910.1001 entitled Sampling and Analytical Procedure is amended by adding the following sentence to the end: - 2. * * * Do not reuse or reload cassettes for asbestos sample collection. - 6. Paragraph 11 of the section of Appendix A to § 1910.1001 entitled Sampling and Analytical Procedure is revised to read as follows: - 11. Each set of samples taken will include 10% field blanks or a minimum of 2 field blanks. These blanks must come from the same lot as the filters used for sample collection. The field blank results shall be averaged and subtracted from the analytical results before reporting. A set consists of any sample or group of samples for which an evaluation for this standard must be made. Any samples represented by a field blank having a fiber count in excess of the detection limit of the method being used shall be rejected. - 7. Paragraph 2 of the section of Appendix A to § 1910.1001 entitled Quality Control Procedures is amended by redesignating it as paragraph 2a and by adding paragraph 2b to read as follows: - 2.b. All laboratories should also participate in a national sample testing scheme such as the Proficiency Analytical Testing Program (PAT), or the Asbestos Registry sponsored by the American Industrial Hygiene Association (AIHA). - 8. Appendix B of 1910 1001 is revised to read as follows: Appendix B to § 1910.1001—Detailed Procedures for Asbestos Sampling and Analysis—Non-mandatory Air Matrix: OSHA Permissible Exposure Limits: . 2 Time Weighted Aver- 0.1 fiber/cc age. Excursion Level (30 1.0 fiber/cc minutes). , , Collection Procedure: A known volume of air is drawn through a 25-mm diameter cassette containing a mixed-cellulose ester filter. The cassette must be equipped with an electrically conductive 50-mm extension cowl. The sampling time and rate are chosen to give a fiber density of between 100 to 1,300 fibers/mm² on the filter. Recommended Sampling 0.5 to 5.0 liters/Rate. minute (L/min) Recommended Air Volumes: Minin Analytical Procedure: A portion of the sample filter is cleared and prepared for asbestos fiber counting by Phase Contrast Microscopy (PCM) at 400X. Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources can be substituted. #### 1. Introduction This method describes the collection of airborne asbestos fibers using calibrated sampling pumps with mixed-cellulose ester (MCE) filters and analysis by phase contrast microscopy (PCM). Some terms used are unique to this method and are defined below: Asbestos: A term for naturally occurring fibrous minerals. Asbestos includes chrysotile, crocidolite, amosite (cummingtonite-grunerite asbestos), tremolite asbestos, actinolite asbestos, anthophyllite asbestos, and any of these minerals that have been chemically treated and/or altered. The precise chemical formulation of each species will vary with the location from which it was mined. Nominal compositions are listed: Asbestos Fiber: A fiber of asbestos which meets the criteria specified below for a fiber. Aspect Ratio: The ratio of the length of a fiber to it's diameter (e.g. 3:1, 5:1 aspect ratios). Cleavage Fragments: Mineral particles formed by comminution of minerals, especially those characterized by parallel sides and a moderate aspect ratio (usually less than 20:1). Detection Limit: The number of fibers necessary to be 95% certain that the result is greater than zero. Differential Counting: The term applied to the practice of excluding certain kinds of fibers from the fiber count because they do not appear to be asbestos. Fiber: A particle that is 5 μm or longer, with a length-to-width ratio of 3 to 1 or longer. Field: The area within the graticule circle that is superimposed on the microscope image Set: The samples which are taken, submitted to the laboratory, analyzed, and for which, interim or final result reports are generated. Tremolite, Anthophyllite, and Actinolite: The non-asbestos form of these minerals which meet the definition of a fiber. It includes any of these minerals that have been chemically treated and/or altered. Walton-Beckett Graticule: An eyepiece graticule specifically designed for asbestos fiber counting. It consists of a circle with a projected diameter of 100 # 2 µm (area of about 0.00785 mm²) with a crosshair having tic-marks at 3-µm intervals in one direction and 5-µm in the orthogonal direction. There are marks around the periphery of the circle to demonstrate the proper sizes and shapes of fibers. This design is reproduced in Figure 2. The disk is placed in one of the microscope eyepieces so that the design is superimposed on the field of view. # 1.1. History Early surveys to determine asbestos exposures were conducted using impinger counts of total dust with the counts expressed as million particles per cubic foot. The British Asbestos Research Council recommended filter membrane counting in 1969. In July 1969, the Bureau of Occupational Safety and Health published a filter membrane method for counting asbestos fibers in the United States. This method was refined by NIOSH and published as P & CAM 239. On May 29, 1971, OSHA specified filter membrane sampling with phase contrast counting for evaluation of asbestos exposures at work sites in the United States. The use of this technique was again required by OSHA in 1986. Phase contrast microscopy has continued to be the method of choice for the measurement of occupational exposure to asbestos. #### 1.2. Principle Air is drawn through a MCE filter to capture airborne asbestos fibers. A wedge shaped portion of the filter is removed, placed on a glass microscope slide and made transparent. A measured area (field) is viewed by PCM. All the fibers meeting a defined criteria for asbestos are counted and considered a measure of the airborne asbestos concentration. # 1.3. Advantages and Disadvantages There are four main advantages of PCM over other methods: - (1) The technique is specific for fibers. Phase contrast is a fiber counting technique which excludes non-fibrous particles from the analysis. - (2) The technique is inexpensive and does not require specialized knowledge to carry out the analysis for total fiber counts. - (3)
The analysis is quick and can be performed on-site for rapid determination of air concentrations of asbestos fibers. - (4) The technique has continuity with historical epidemiological studies so that estimates of expected disease can be inferred from long-term determinations of asbestos exposures. The main disadvantage of PCM is that it does not positively identify asbestos fibers. Other fibers which are not asbestos may be included in the count unless differential counting is performed. This requires a great deal of experience to adequately differentiate asbestos from non-asbestos fibers. Positive identification of asbestos must be performed by polarized light or electron microscopy techniques. A further disadvantage of PCM is that the smallest visible fibers are about 0.2 µm in diameter while the finest asbestos fibers may be as small as 0.02 µm in diameter. For some exposures, substantially more fibers may be present than are actually # 1.4. Workplace Exposure Asbestos is used by the construction industry in such products as shingles, floor tiles, asbestos cement, roofing felts, insulation and acoustical products. Nonconstruction uses include brakes, clutch facings, paper, paints, plastics, and fabrics. One of the most significant exposures in the workplace is the removal and encapsulation of asbestos in schools, public buildings, and homes. Many workers have the potential to be exposed to asbestos during these operations. About 95% of the asbestos in commercial use in the United States is chrysotile. Crocidolite and amosite make up most of the remainder. Anthophyllite and tremolite or actinolite are likely to be encountered as contaminants in various industrial products. #### 1.5. Physical Properties Asbestos fiber possesses a high tensile strength along its axis, is chemically inert, non-combustible, and heat resistant. It has a high electrical resistance and good sound absorbing properties. It can be weaved into cables, fabrics or other textiles, and also matted into asbestos papers, felts, or mats. # 2. Range and Detection Limit - 2.1. The ideal counting range on the filter is 100 to 1,300 fibers/mm2. With a Walton-Beckett graticule this range is equivalent to 0.8 to 10 fibers/field. Using NIOSH counting statistics, a count of 0.8 fibers/field would give an approximate coefficient of variation (CV) of 0.13. - 2.2. The detection limit for this method is 4.0 fibers per 100 fields or 5.5 fibers/mm². This was determined using an equation to estimate the maximum CV possible at a specific concentration (95% confidence) and a Lower Control Limit of zero. The CV value was then used to determine a corresponding concentration from historical CV vs fiber relationships. As an example: Lower Control Limit (95% Confidence) = AC - 1.645(CV)(AC) Where: AC = Estimate of the airborne fiber concentration (fibers/cc) Setting the Lower Control Limit = 0 and solving for CV: 0 = AC - 1.645(CV)(AC)CV = 0.61 This value was compared with CV vs. count curves. The count at which CV = 0.61 for Leidel-Busch counting statistics or for an OSHA Salt Lake Technical Center (OSHA- SLTC) CV curve (see Appendix A for further information) was 4.4 fibers or 3.9 fibers per 100 fields, respectively. Although a lower detection limit of 4 fibers per 100 fields is supported by the OSHA-SLTC data, both data sets support the 4.5 fibers per 100 fields # 3. Method Performance-Precision and Precision is dependent upon the total number of fibers counted and the uniformity of the fiber distribution on the filter. A general rule is to count at least 20 and not more than 100 fields. The count is discontinued when 100 fibers are counted, provided that 20 fields have already been counted. Counting more than 100 fibers results in only a small gain in precision. As the total count drops below 10 fibers, an accelerated loss of precision is noted. At this time, there is no known method to determine the absolute accuracy of the asbestos analysis. Results of samples prepared through the Proficiency Analytical Testing (PAT) Program and analyzed by the OSHA-SLTC showed no significant bias when compared to PAT reference values. The PAT samples were analyzed from 1987 to 1989 (N=36) and the concentration range was from 120 to 1,300 fibers/mm². #### 4. Interferences Fibrous substances, if present, may interfere with asbestos analysis. Some common fibers are: Fiber glass anhydrite Perlite veins. plant fibers. Gypsum Some synthetic fibers. Membrane structures Sponge spicules and diatoms. Microorganisms Wollastonite. The use of electron microscopy or optical tests such as polarized light, and dispersion staining may be used to differentiate these materials from asbestos when necessary. # 5. Sampling # 5.1. Equipment 5.1.1. Sample assembly (The assembly is shown in Figure 3). Conductive filter holder consisting of a 25-mm diameter, 3-piece cassette having a 50-mm long electrically conductive extension cowl. Backup pad, 25mm, cellulose. Membrane filter, mixedcellulose ester (MCE), 25-mm, plain, white, 0.8- to 1.2-µm pore size. Notes: (a) Do not re-use cassettes. (b) Fully conductive cassettes are required to reduce fiber loss to the sides of the cassette due to electrostatic attraction. (c) Purchase filters which have been selected by the manufacturer for asbestos counting or analyze representative filters for fiber background before use. Discard the filter lot if more than 4 fibers/100 fields are found. (d) To decrease the possibility of contamination, the sampling system (filterbackup pad-cassette) for asbestos is usually preassembled by the manufacturer. 5.1.2. Gel bands for sealing cassettes. 5.1.3. Sampling pump. Each pump must be a battery operated, self-contained unit small enough to be placed on the monitored employee and not interfere with the work being performed. The pump must be capable of sampling at 2.5 liters per minute (L/min) for the required sampling 5.1.4. Flexible tubing, 6-mm bore. 5.1.5. Pump calibration. Stopwatch and bubble tube/burette or electronic meter. 5.2. Sampling Procedure 5.2.1. Seal the point where the base and cowl of each cassette meet (see Figure 3) with a gel band or tape. 5.2.2. Charge the pumps completely before beginning. 5.2.3. Connect each pump to a calibration cassette with an appropriate length of 6-mm bore plastic tubing. Do not use luer connectors—the type of cassette specified above has built-in adapters. 5.2.4. Select an appropriate flow rate for the situation being monitored. The sampling flow rate must be between 0.5 and 5.0 L/min for personal sampling and is commonly set between 1 and 2 L/min. Always choose a flow rate that will not produce overloaded filters. 5.2.5. Calibrate each sampling pump before and after sampling with a calibration cassette in-line (Note: This calibration cassette should be from the same lot of cassettes used for sampling). Use a primary standard (e.g. bubble burette) to calibrate each pump. If possible, calibrate at the sampling site. Note: If sampling site calibration is not possible, environmental influences may affect the flow rate. The extent is dependent on the type of pump used, Consult with the pump manufacturer to determine dependence on environmental influences. If the pump is affected by temperature and pressure changes, use the formula in Appendix B to calculate the actual flow rate. 5.2.6. Connect each pump to the base of each sampling cassette with flexible tubing. Remove the end cap of each cassette and take each air sample open face. Assure that each sample cassette is held open side down in the employee's breathing zone during sampling. The distance from the nose/mouth of the employee to the cassette should be about 10 cm. Secure the cassette on the collar or lapel of the employee using spring clips or other similar devices. 5.2.7. A suggested minimum air volume when sampling to determine TWA compliance is 25 L. For Excursion Limit (30 min sampling time) evaluations, a minimum air volume of 48 L is recommended. 5.2.8. The most significant problem when sampling for asbestos is overloading the filter with non-asbestos dust. Suggested maximum air sample volumes for specific environments are: Air vol. Environment (L) Asbestos removal operations (visi-100 ble dust). Asbestos removal operations (little 240 Office environments 400 to 2,400 Caution: Do not overload the filter with dust. High levels of non-fibrous dust particles may obscure fibers on the filter and lower the count or make counting impossible. If more than about 25 to 30% of the field area is obscured with dust, the result may be biased low. Smaller air volumes may be necessary when there is excessive non-asbestos dust in the air. While sampling, observe the filter with a small flashlight. If there is a visible layer of dust on the filter, stop sampling, remove and seal the cassette, and replace with a new sampling assembly. The total dust loading should not exceed 1 mg. 5.2.9. Blank samples are used to determine if any contamination has occurred during sample handling. Prepare two blanks for the first 1 to 20 samples. For sets containing greater than 20 samples, prepare blanks as 10% of the samples. Handle blank samples in the same manner as air samples with one exception: Do not draw any air through the blank samples. Open the blank cassette in the place where the sample cassettes are mounted on the employee. Hold it open for about 30 seconds. Close and seal the cassette appropriately. Store blanks for shipment with the sample cassettes. 5.2.10. Immediately after sampling, close and seal each cassette with the base and plastic plugs. Do not touch or puncture the filter membrane as this will invalidate the analysis. 5.2.11. Attach a seal (OSHA-21 or equivalent) around each cassette in such a way as to secure the end cap plug and base plug. Tape the ends of the seal together since the seal is not long enough to be wrapped end-to-end. Also wrap tape around the cassette at each joint to keep the seal
secure. #### 5.3. Sample Shipment 5.3.1. Send the samples to the laboratory with paperwork requesting asbestos analysis. List any known fibrous interferences present during sampling on the paperwork. Also, note the workplace operation(s) sampled. 5.3.2. Secure and handle the samples in such that they will not rattle during shipment nor be exposed to static electricity. Do not ship samples in expanded polystyrene peanuts, vermiculite, paper shreds, or excelsior. Tape sample cassettes to sheet bubbles and place in a container that will cushion the samples without rattling. 5.3.3. To avoid the possibility of sample contamination, always ship bulk samples in separate mailing containers. # 6. Analysis ## 6.1. Safety Precautions 6.1.1. Acetone is extremely flammable and precautions must be taken not to ignite it. Avoid using large containers or quantities of acetone. Transfer the solvent in a ventilated laboratory hood. Do not use acetone near any open flame. For generation of acetone vapor, use a spark free heat source. 6.1.2. Any asbestos spills should be cleaned up immediately to prevent dispersalof fibers. Prudence should be exercised to avoid contamination of laboratory facilities or exposure of personnel to asbestos. Asbestos spills should be cleaned up with wet methods and/or a High Efficiency Particulate-Air (HEPA) filtered vacuum. Caution: Do not use a vacuum without a HEPA filter—It will disperse fine asbestos fibers in the air. # 6.2. Equipment 6.2.1. Phase contrast microscope with binocular or trinocular head. 6.2.2. Widefield or Huygenian 10X eyepieces (Note: The eyepiece containing the graticule must be a focusing eyepiece. Use a 40X phase objective with a numerical aperture of 0.65 to 0.75). 6.2.3. Kohler illumination (if possible) with green or blue filter. 6.2.4. Walton-Beckett Graticule, type G-22 with $100 \pm 2 \mu m$ projected diameter. 6.2.5. Mechanical stage. A rotating mechanical stage is convenient for use with polarized light. 6.2.6. Phase telescope. 6.2.7. Stage micrometer with 0.01-mm subdivisions. 6.2.8. Phase-shift test slide, mark II (Available from PTR optics Ltd., and also McCrone). 6.2.9. Precleaned glass slides, 25 mm X 75 mm. One end can be frosted for convenience in writing sample numbers, etc., or paste-on labels can be used. 6.2.10. Cover glass #1 1/2. 6.2.11. Scalpel (#10, curved blade). 6.2.12. Fine tipped forceps. 6.2.13. Aluminum block for clearing filter (see Appendix D and Figure 4). 6.2.14. Automatic adjustable pipette, 100to 500-μL. 6.2.15. Micropipette, 5 μL. #### 6.3. Reagents 6.3.1. Acetone (HPLC grade). 6.3.2. Triacetin (glycerol triacetate). 6.3.3. Lacquer or nail polish. #### 6.4. Standard Preparation A way to prepare standard asbestos samples of known concentration has not been developed. It is possible to prepare replicate samples of nearly equal concentration. This has been performed through the PAT program. These asbestos samples are distributed by the AIHA to participating laboratories. Since only about one-fourth of a 25-mm sample membrane is required for an asbestos count, any PAT sample can serve as a "standard" for replicate counting. #### 6.5. Sample Mounting Note: See Safety Precautions in Section 6.1. before proceeding. The objective is to produce samples with a smooth (non-grainy) background in a medium with a refractive index of approximately 1.46. The technique below collapses the filter for easier focusing and produces permanent mounts which are useful for quality control and interlaboratory comparison. An aluminum block or similar device is required for sample preparation. A drawing is shown in Figure 4. 6.5.1. Heat the aluminum block to about 70° C. The hot block should not be used on any surface that can be damaged by either the heat or from exposure to acctone. 6.5.2. Ensure that the glass slides and cover glasses are free of dust and fibers. 6.5.3. Remove the top plug to prevent a vacuum when the cassette is opened. Clean the outside of the cassette if necessary. Cut the seal and/or tape on the cassette with a razor blade. Very carefully separate the base from the extension cowl, leaving the filter and backup pad in the base. 6.5.4. With a rocking motion cut a triangular wedge from the filter using the scalpel. This wedge should be one-sixth to one-fourth of the filter. Grasp the filter wedge with the forceps on the perimeter of the filter which was clamped between the cassette pieces. DO NOT TOUCH the filter with your finger. Place the filter on the glass slide sample side up. Static electricity will usually keep the filter on the slide until it is cleared. 6.5.5. Place the tip of the micropipette containing about 200 µL acetone into the aluminum block. Insert the glass slide into the receiving slot in the aluminum block. Inject the acetone into the block with slow, steady pressure on the plunger while holding the pipette firmly in place. Wait 3 to 5 seconds for the filter to clear, then remove the pipette and slide from the aluminum block. 6.5.6. Immediately (less than 30 seconds) place 2.5 to 3.5 μ L of triacetin on the filter (Note: Waiting longer than 30 seconds will result in increased index of refraction and decreased contrast between the fibers and the preparation. This may also lead to separation of the cover slip from the slide). 6.5.7. Lower a cover slip gently onto the filter at a slight angle to reduce the possibility of forming air bubbles. If more than 30 seconds have elapsed between acetone exposure and triacetin application, glue the edges of the cover slip to the slide with lacquer or nail polish. 6.5.8. If clearing is slow, warm the slide for 15 min on a hot plate having a surface temperature of about 50 °C to hasten clearing The top of the hot block can be used if the slide is not heated too long. 6.5.9. Counting may proceed immediately after clearing and mounting are completed. # 6.6. Sample Analysis Completely align the microscope according to the manufacturer's instructions. Then, align the microscope using the following general alignment routine at the beginning of every counting session and more often if necessary. # 6.6.1. Alignment (1) Clean all optical surfaces. Even a small amount of dirt can significantly degrade the image. (2) Rough focus the objective on a sample. (3) Close down the field iris so that it is visible in the field of view. Focus the image of the iris with the condenser focus. Center the image of the iris in the field of view. (4) Install the phase telescope and focus on the phase rings. Critically center the rings. Misalignment of the rings results in astignatism which will degrade the image. (5) Place the phase-shift test slide on the microscope stage and focus on the lines. The analyst must see line set 3 and should see at least parts of 4 and 5 but, not see line set 6 or 6. A microscope/microscopist combination which does not pass this test may not be used. # 6.6.2. Counting Fibers (1) Place the prepared sample slide on the mechanical stage of the microscope. Position the center of the wedge under the objective lens and focus upon the sample. (2) Start counting from one end of the wedge and progress along a radial line to the other end (count in either direction from perimeter to wedge tip). Select fields randomly, without looking into the evepieces, by slightly advancing the slide in one direction with the mechanical stage (3) Continually scan over a range of focal planes (generally the upper 10 to 15 µm of the filter surface) with the fine focus control during each field count. Spend at least 5 to 15 seconds per field. (4) Most samples will contain asbestos fibers with fiber diameters less than 1 µm. Look carefully for faint fiber images. The small diameter fibers will be very hard to see. However, they are an important contribution to the total count. (5) Count only fibers equal to or longer than 5 µm. Measure the length of curved fibers along the curve. (6) Count fibers which have a length to width ratio of 3:1 or greater. (7) Count all the fibers in at least 20 fields. Continue counting until either 100 fibers are counted or 100 fields have been viewed; whichever occurs first. Count all the fibers in the final field. (8) Fibers lying entirely within the boundary of the Walton-Beckett graticule field shall receive a count of 1. Fibers crossing the boundary once, having one end within the circle shall receive a count of 1/2. Do not count any fiber that crosses the graticule boundary more than once. Reject and do not count any other fibers even though they may be visible outside the graticule area. If a fiber touches the circle, it is considered to cross the line. (9) Count bundles of fibers as one fiber unless individual fibers can be clearly identified and each individual fiber is clearly not connected to another counted fiber. See Figure 2 for counting conventions. (10) Record the number of fibers in each field in a consistent way such that filter nonuniformity can be assessed. (11) Regularly check phase ring alignment. (12) When an agglomerate (mass of material) covers more than 25% of the field of view, reject the field and select another. Do not include it in the number of fields counted. (13) Perform a "blind recount" of 1 in every 10 filter wedges (slides). Re-label the slides using a person other than the original # 6.7. Fiber Identification. As previously mentioned in Section 1.3., PCM does not provide positive confirmation of asbestos fibers. Alternate differential counting techniques should be used if discrimination is desirable. Differential counting may include primary discrimination based on morphology, polarized light analysis of fibers, or modification of PCM data by Scanning Electron or Transmission Electron Microscopy. A great deal of experience is required to routinely and correctly perform differential counting. It is discouraged unless it is legally necessary. Then, only if a fiber is obviously not asbestos should it be excluded from the count. Further discussion of
this technique can be found in reference 8.10. If there is a question whether a fiber is asbestos or not, follow the rule: "WHEN IN DOUBT, COUNT." 6.8. Analytical Recommendations—Quality Control System 6.8.1. All individuals performing asbestos analysis must have taken the NIOSH course for sampling and evaluating airborne asbestos or an equivalent course. 6.8.2. Each laboratory engaged in asbestos counting shall set up a slide trading arrangement with at least two other laboratories in order to compare performance and eliminate inbreeding of error. The slide exchange occurs at least semiannually. The round robin results shall be posted where all analysts can view individual analyst's results. 6.8.3. Each laboratory engaged in asbestos counting shall participate in the Proficiency Analytical Testing Program, the Asbestos Analyst Registry or equivalent. 6.8.4. Each analyst shall select and count prepared slides from a "slide bank". These are quality assurance counts. The slide bank shall be prepared using uniformly distributed samples taken from the workload. Fiber densities should cover the entire range routinely analyzed by the laboratory. These slides are counted blind by all counters to establish an original standard deviation. This historical distribution is compared with the quality assurance counts. A counter must have 95% of all quality control samples counted within three standard deviations of the historical mean. This count is then integrated into a new historical mean and standard deviation for the slide. The analyses done by the counters to establish the slide bank may be used for an interim quality control program if the data are treated in a proper statistical fashion. ## 7. CALCULATIONS 7.1. Calculate the estimated airborne asbestos fiber concentration on the filter sample using the following formula: where: AC=Airborne fiber concentration $$AC = \frac{\left[\left(\frac{FB}{FL}\right) - \left(\frac{BFB}{BFL}\right)\right] \times ECA}{1000 \times FR \times T \times MFA}$$ FB=Total number of fibers greater than 5 μm counted FL=Total number of fields counted on the BFB=Total number of fibers greater than 5 um counted in the blank BFL=Total number of fields counted on the blank ECA=Effective collecting area of filter (385 mm² nominal for a 25-mm filter.) FR=Pump flow rate (L/min) MFA=Microscope count field area (mm²). This is 0.00785 mm² for a Walton-Beckett Graticule. T=Sample collection time (min) 1,000=Conversion of L to cc Note: The collection area of a filter is seldom equal to 385 mm². It is appropriate for laboratories to routinely monitor the exact diameter using an inside micrometer. The collection area is calculated according to the formula: Area= $\pi(d/2)^2$ # 7.2. Short-cut Calculation Since a given analyst always has the same interpupillary distance, the number of fields per filter for a particular analyst will remain constant for a given size filter. The field size for that analyst is constant (i.e. the analyst is using an assigned microscope and is not changing the reticle). For example, if the exposed area of the filter is always 385 mm² and the size of the field is always 0.00785 mm2, the number of fields per filter will always be 49,000. In addition it is necessary to convert liters of air to cc. These three constants can then be combined such that ECA/(1,000 X MFA)=49. The previous equation simplifies to: $$AC = \frac{\left(\frac{FB}{FL}\right) - \left(\frac{BFB}{BFL}\right) \times 49}{FR \times T}$$ #### 7.3. Recount Calculations As mentioned in step 13 of Section 6.6.2., a "blind recount" of 10% of the slides is performed. In all cases, differences will be observed between the first and second counts of the same filter wedge. Most of these differences will be due to chance alone, that is, due to the random variability (precision) of the count method. Statistical recount criteria enables one to decide whether observed differences can be explained due to chance alone or are probably due to systematic differences between analysts, microscopes, or other biasing factors. The following recount criterion is for a pair of counts that estimate AC in fibers/cc. The criterion is given at the type-I error level. That is, there is 5% maximum risk that we will reject a pair of counts for the reason that one might be biased, when the large observed difference is really due to chance. Reject a pair of counts if: $$\left| \sqrt{AC_2 - \sqrt{AC_1}} \right| > 2.78 \times \left(\sqrt{AC_{avg}} \right) \times CV_{FB}$$ Where: AC1=lower estimated airborne fiber concentration AC2=higher estimated airborne fiber concentration ACavg=average of the two concentration CV_{FB}=CV for the average of the two concentration estimates If a pair of counts are rejected by this criterion then, recount the rest of the filters in the submitted set. Apply the test and reject any other pairs failing the test. Rejection shall include a memo to the industrial hygienist stating that the sample failed a statistical test for homogeneity and the true air concentration may be significantly different than the reported value. #### 7.4. Reporting Results Report results to the industrial hygienist as fibers/cc. Use two significant figures. If multiple analyses are performed on a sample, an average of the results is to be reported unless any of the results can be rejected for # 8. References 8.1. Dreesen, W.C., et al, U.S. Public Health Service: A Study of Asbestosis in the Asbestos Textile Industry, (Public Health Bulletin No. 241), US Treasury Dept., Washington, DC, 1938. 8.2. Asbestos Research Council: The Measurement of Airborne Asbestos Dust by the Membrane Filter Method (Technical Note), Asbestos Research Council, Rockdale, Lancashire, Great Britain, 1969. 8.3. Bayer, S.G., Zumwalde, R.D., Brown, T.A., Equipment and Procedure for Mounting Millipore Filters and Counting Asbestos Fibers by Phase Contrast Microscopy, Bureau of Occupational Health, U.S. Dept. of Health, Education and Welfare, Cincinnati, OH, 8.4. NIOSH Manual of Analytical Methods. 2nd ed., Vol. 1 (DHEW/NIOSH Pub. No. 77-157-A). National Institute for Occupational Safety and Health, Cincinnati, OH, 1977. pp. 239-1-239-21. 8.5. Asbestos, Code of Federal Regulations 29 CFR 1910.1001. 1971. 8.6. Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite. Final Rule, Federal Register 51:119 (20 June 1986). pp.22612-22790. 8.7. Asbestos, Tremolite, Anthophyllite, and Actinolite, Code of Federal Regulations 1910.1001. 1988. pp 711-752. 8.8. Criteria for a Recommended Standard—Occupational Exposure to Asbestos (DHEW/NIOSH Pub. No. HSM 72-10267), National Institute for Occupational Safety and Health NIOSH, Cincinnati, OH, 1972. pp. III-1-III-24. 8.9. Leidel, N.A., Bayer, S.G., Zumwalde, R.D., Busch, K.A., USPHS/NIOSH Membrane Filter Method for Evaluating Airborne Asbestos Fibers (DHEW/NIOSH Pub. No. 79-127). National Institute for Occupational Safety and Health, Cincinnati, OH, 1979. 8.10. Dixon, W.C., Applications of Optical Microscopy in Analysis of Asbestos and Quartz, Analytical Techniques in Occupational Health Chemistry, edited by D.D. Dollberg and A.W. Verstuyft. Wash. D.C.: American Chemical Society, (ACS Symposium Series 120) 1980. pp. 13-41. #### Quality Control The OSHA asbestos regulations require each laboratory to establish a quality control program. The following is presented as an example of how the OSHA-SLTC constructed its internal CV curve as part of meeting this requirement. Data for the CV curve shown below is from 395 samples collected during OSHA compliance inspections and analyzed from October 1980 through April 1986. Each sample was counted by 2 to 5 different counters independently of one another. The standard deviation and the CV statistic was calculated for each sample. This data was then plotted on a graph of CV vs. fibers/mm². A least squares regression was performed using the following equation: $CV = antilog 1_{10} [A(log_{10}(x))^2 + B(log_{10}(x)) + C]$ x=the number of fibers/mm2 Application of least squares gave: A=0.182205 B = -0.973343C=0.327499 Using these values, the equation becomes: CV=antilog10 (0.182205(log10 $(x)^2 - 0.973343(\log_{10}(x)) + 0.327499$ Sampling Pump Flow Rate Corrections This correction is used if a difference greater than 5% in ambient temperature and/ or pressure is noted between calibration and sampling sites and the pump does not compensate for the differences. $$Q_{act} = Q_{cal} \times \sqrt{\left(\frac{P_{cal}}{P_{act}}\right) \times \left(\frac{T_{act}}{T_{cal}}\right)}$$ Where: Quet=actual flow rate Qcal=calibrated flow rate (if a rotameter was used, the rotameter value) Pcal=uncorrected air pressure at calibration Pact=uncorrected air pressure at sampling site Tact=temperature at sampling site (K) T_{cal}=temperature at calibration (K) # Walton-Beckett Graticule When ordering the Graticule for asbestos counting, specify the exact disc diameter needed to fit the ocular of the microscope and the diameter (mm) of the circular counting area. Instructions for measuring the dimensions necessary are listed: (1) Insert any available graticule into the focusing eyepiece and focus so that the graticule lines are sharp and clear. (2) Align the microscope. (3) Place a stage micrometer on the microscope object stage and focus the microscope on the graduated lines. (4) Measure the magnified grid length, PL (µm), using the stage micrometer. (5) Remove the graticule from the microscope and measure its actual grid length, AL (mm). This can be accomplished by using a mechanical stage fitted with verniers, or a jeweler's loupe with a direct reading scale. (6) Let D=100 μm. Calculate the circle diameter, d_c (mm), for the Walton-Beckett graticule and specify the diameter when making a purchase: $$d_{c} = \frac{AL \times D}{PL}$$ Example: If PL=108 µm, AL=2.93 mm and D=100 µm, then, $$d_c = \frac{2.93 \times 100}{108} = 2.71 \text{mm}$$ (7) Each eyepiece-objective-reticle combination on the microscope
must be calibrated. Should any of the three be changed (by zoom adjustment, disassembly, replacement, etc.), the combination must be recalibrated. Calibration may change if interpupillary distance is changed. Measure the field diameter, D (acceptable range: 100±2 μm) with a stage micrometer upon receipt of the graticule from the manufacturer. Determine the field area (mm²). Field Area= $\pi(D/2)$ 2 If D=100 µm=0.1 mm, then Field Area= $\pi(0.1 \text{ mm/2})^2=0.00785 \text{ mm}^2$ The Graticule is available from: Graticules Ltd., Morley Road, Tonbridge TN9 IRN, Kent, England (Telephone 011-44-732-359061). Also available from PTR Optics Ltd., 145 Newton Street, Waltham, MA 02154 [telephone (617) 891-6000] or McCrone Accessories and Components, 2506 S. Michigan Ave., Chicago, IL 60616 [phone (312)-842-7100). The graticule is custom made for each microscope. # COUNTS FOR THE FIBERS IN THE **FIGURE** | Structure
No. | Count | Explanation | |------------------|-------|--| | 1 to 6 | 1 | Single fibers all contained within the circle. | | 7 | 1/2 | Fiber crosses circle once. | | 8 | . 0 | Fiber too short. | | . 9 | 2 | Two crossing fibers. | | 10 | 0 | Fiber outside graticule. | | 11 | 0 | Fiber crosses graticule twice. | | 12 | 1/2 | Although split, fiber only crosses once. | Figure 1: Walton-Beckett Graticule with some explanatory fibers. 9. Appendix D to § 1910.1001 is amended by revising the first sentence to read as follows: # Appendix D to 1910.1001—Medical Questionnaires; Mandatory This mandatory appendix contains the medical questionnaires that must be administered to all employees who are exposed to asbestos above the permissible exposure limit, and who will therefore be included in their employer's medical surveillance program. * * * 10. Appendix F to § 1910.1001 is revised to read as follows: # Appendix F to § 1910.1001—Work Practices and Engineering Controls for Automotive Brake and Clutch Inspection, Disassembly, Repair and Assembly—Mandatory This mandatory appendix specifies engineering controls and work practices that must be implemented by the employer during automotive brake and clutch inspection, disassembly, repair, and assembly operations. Proper use of these engineering controls and work practices will reduce employees' asbestos exposure below the permissible exposure level during clutch and brake inspection, disassembly, repair, and assembly operations. The employer shall institute engineering controls and work practices using either the method set forth in paragraph [A] or paragraph [B] of this appendix, or any other method which the employer can demonstrate to be equivalent in terms of reducing employee exposure to asbestos as defined and which meets the requirements described in paragraph [C] of this appendix, for those facilities in which no more than 5 pairs of brakes or 5 clutches are inspected, disassembled, reassembled and/or repaired per week, the method set forth in paragraph [D] of this appendix may be used: # [A] Negative Pressure Enclosure/HEPA Vacuum System Method - (1) The brake and clutch inspection, disassembly, repair, and assembly operations shall be enclosed to cover and contain the clutch or brake assembly and to prevent the release of asbestos fibers into the worker's breathing zone. - (2) The enclosure shall be sealed tightly and thoroughly inspected for leaks before work begins on brake and clutch inspection, disassembly, repair, and assembly. - (3) The enclosure shall be such that the worker can clearly see the operation and shall provide impermeable sleeves through which the worker can handle the brake and clutch inspection, disassembly, repair and assembly. The integrity of the sleeves and ports shall be examined before work begins. - (4) A HEPA-filtered vacuum shall be employed to maintain the enclosure under negative pressure throughout the operation. Compressed-air may be used to remove asbestos fibers or particles from the enclosure. - (5) The HEPA vacuum shall be used first to loosen the asbestos containing residue from the brake and clutch parts and then to evacuate the loosened asbestos containing material from the enclosure and capture the material in the vacuum filter. - (6) The vacuum's filter, when full, shall be first wetted with a fine mist of water, then removed and placed immediately in an impermeable container, labeled according to paragraph (j)(2)(ii) of this section and disposed of according to paragraph (k) of this section. - (7) Any spills or releases of asbestos containing waste material from inside of the enclosure or vacuum hose or vacuum filter shall be immediately cleaned up and disposed of according to paragraph (k) of the section. # [B] Low Pressure/Wet Cleaning Method - (1) A catch basin shall be placed under the brake assembly, positioned to avoid splashes and spills. - (2) The reservoir shall contain water containing an organic solvent or wetting agent. The flow of liquid shall be controlled such that the brake assembly is gently flooded to prevent the asbestos-containing brake dust from becoming airborne. - (3) The aqueous solution shall be allowed to flow between the brake drum and brake support before the drum is removed. (4) After removing the brake drum, the wheel hub and back of the brake assembly shall be thoroughly wetted to suppress dust. (5) The brake support plate, brake shoes and brake components used to attach the brake shoes shall be thoroughly washed before removing the old shoes. (6) In systems using filters, the filters, when full, shall be first wetted with a fine mist of water, then removed and placed immediately in an impermeable container, labeled according to paragraph (j)(2)(ii) of this section and disposed of according to paragraph (k) of this section. (7) Any spills of asbestos-containing aqueous solution or any asbestos-containing waste material shall be cleaned up immediately and disposed of according to paragraph (k) of this section. (8) The use of dry brushing during low pressure/wet cleaning operations is prohibited. # [C] Equivalent Methods An equivalent method is one which has sufficient written detail so that it can be reproduced and has been demonstrated that the exposures resulting from the equivalent method are equal to or less than the exposures which would result from the use of the method described in paragraph [A] of this appendix. For purposes of making this comparison, the employer shall assume that exposures resulting from the use of the method described in paragraph [A] of this appendix shall not exceed 0.004 f/cc, as measured by the OSHA reference method and as averaged over at least 18 personal samples. # [D] Wet Method. - (1) A spray bottle, hose nozzle, or other implement capable of delivering a fine mist of water or amended water or other delivery system capable of delivering water at low pressure, shall be used to first thoroughly wet the brake and clutch parts. Brake and clutch components shall then be wiped clean with a cloth. - (2) The cloth shall be placed in an impermeable container, labelled according to paragraph (j)(2)(ii) of the standard and then disposed of according to paragraph (k) of the standard, or the cloth shall be laundered in a way to prevent the release of asbestos fibers in excess of 0.1 fiber per cubic centimeter of air. - (3) Any spills of solvent or any asbestos containing waste-material shall be cleaned up immediately according to paragraph (k) of the standard. (4) The use of dry brushing during the wet method operations is prohibited. # Appendix G to § 1910.1001 [Amended] - 11. Appendix G of § 1910.1001 is amended by replacing the phrase "0.2 f/cc" with the phrase "0.1 f/cc" in paragraph I. D. entitled "Permissible exposure:".. - 12. Appendix G of § 1910.1001 is amended by replacing the phrase "0.2 f/cc" with the phrase "0.1 f/cc" in paragraph III.A. entitled "Respirators:". 13. Appendix G of § 1910.1001 is amended by revising paragraph III. B. to read as follows: III. * * * B. Protective clothing: You are required to wear protective clothing in work areas where asbestos fiber concentrations exceed to permissible exposure limit. # Appendix H to § 1910.1001 [Amended] 14. Appendix H of § 1910.1001 is amended by revising the first sentence of the second paragraph of section IV. entitled Surveillance and Preventive Considerations to read as follows: The employer is required to institute a medical surveillance program for all employees who are or will be exposed to asbestos at or above the permissible exposure limit (0.1 fiber per cubic centimeter of air). 15. Appendix J to § 1910.1001 is added to read as follows: # Appendix J to § 1910.1001—Polarized Light Microscopy of Asbestos—Non-Mandatory) Method number: ID-191 Matrix: Bulk Collection Procedure Collect approximately 1 to 2 grams of each type of material and place into separate 20 mL scintillation vials. Analytical Procedure A portion of each separate phase is analyzed by gross examination, phase-polar examination, and central stop dispersion microscopy. Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources may be substituted. #### 1. Introduction This method describes the collection and analysis of asbestos bulk materials by light microscopy techniques including phase-polar illumination and central-stop dispersion microscopy. Some terms unique to asbestos analysis are defined below: Amphibole: A family of minerals whose crystals are formed by long, thin units which have two thin ribbons of double chain silicate with a brucite ribbon in between. The shape of each unit is similar to an "I beam". Minerals important in asbestos analysis include cummingtonite-grunerite, crocidolite, tremolite-actinolite and anthophyllite. Asbestos: A term for naturally occurring fibrous minerals. Asbestos includes chrysotile, cummingtonite-grunerite asbestos
(amosite), anthophyllite asbestos, tremolite asbestos, crocidolite, actinolite asbestos and any of these minerals which have been chemically treated or altered. The precise chemical formulation of each species varies with the location from which it was mined. Nominal compositions are listed: ChrysotileMg₃Si₂O₅(OH)₄ Crocidolite (Riebeckite asbestos)Na₂Fe₃²+Fe₂³+Si₈O₂₂(OH)₂ Cummingtonite-Grunerite asbestos (Amosite).....(Mg,Fe)₇Si₈O₂₂(OH)₂ Tremolite-Actinolite asbestos Asbestos Fiber: A fiber of asbestos meeting the criteria for a fiber. (See section 3.5.) Aspect Ratio: The ratio of the length of a fiber to its diameter usually defined as "length: width", e.g. 3:1. Brucite: A sheet mineral with the composition Mg(OH)₂. Central Stop Dispersion Staining (microscope): This is a dark field microscope technique that images particles using only light refracted by the particle, excluding light that travels through the particle unrefracted. This is usually accomplished with a McCrone objective or other arrangement which places a circular stop with apparent aperture equal to the objective aperture in the back focal plane of the microscope. Cleavage Fragments: Mineral particles formed by the comminution of minerals, especially those characterized by relatively parallel sides and moderate aspect ratio. Differential Counting: The term applied to the practice of excluding certain kinds of fibers from a phase contrast asbestos count because they are not asbestos. Fiber: A particle longer than or equal to 5 µm with a length to width ratio greater than or equal to 3:1. This may include cleavage fragments. (see section 3.5 of this appendix). Phase Contrast: Contrast obtained in the microscope by causing light scattered by small particles to destructively interfere with unscattered light, thereby enhancing the visibility of very small particles and particles with very low intrinsic contrast. Phase Contrast Microscope: A microscope configured with a phase mask pair to create phase contrast. The technique which uses this is called Phase Contrast Microscopy (PCM). Phase-Polar Analysis: This is the use of polarized light in a phase contrast microscope. It is used to see the same size fibers that are visible in air filter analysis. Although fibers finer than 1 µm are visible, analysis of these is inferred from analysis of larger bundles that are usually present. Phase-Polar Microscope: The phase-polar microscope is a phase contrast microscope which has an analyzer, a polarizer, a first order red plate and a rotating phase condenser all in place so that the polarized light image is enhanced by phase contrast. Sealing Encapsulant: This is a product which can be applied, preferably by spraying, onto an asbestos surface which will seal the surface so that fibers cannot be released. Serpentine: A mineral family consisting of minerals with the general composition Mg₃(Si2O₃(OH)₄ having the magnesium in brucite layer over a silicate layer. Minerals important in asbestos analysis included in this family are chrysotile, lizardite, antigorite. # 1.1. History Light microscopy has been used for well over 100 years for the determination of mineral species. This analysis is carried out using specialized polarizing microscopes as well as bright field microscopes. The identification of minerals is an on-going process with many new minerals described each year. The first recorded use of asbestos was in Finland about 2500 B.C. where the material was used in the mud wattle for the wooden huts the people lived in as well as strengthening for pottery. Adverse health aspects of the mineral were noted nearly 2000 years ago when Pliny the Younger wrote about the poor health of slaves in the asbestos mines. Although known to be injurious for centuries, the first modern references to its toxicity were by the British Labor Inspectorate when it banned asbestos dust from the workplace in 1898. Asbestosis cases were described in the literature after the turn of the century. Cancer was first suspected in the mid 1930's and a causal link to mesothelioma was made in 1965. Because of the public concern for worker and public safety with the use of this material, several different types of analysis were applied to the determination of asbestos content. Light microscopy requires a great deal of experience and craft. Attempts were made to apply less subjective methods to the analysis. X-ray diffraction was partially successful in determining the mineral types but was unable to separate out the fibrous portions from the non-fibrous portions. Also, the minimum detection limit for asbestos analysis by X-ray diffraction (XRD) is about 1%. Differential Thermal Analysis (DTA) was no more successful. These provide useful corroborating information when the presence of asbestos has been shown by microscopy: however, neither can determine the difference between fibrous and non-fibrous minerals when both habits are present. The same is true of Infrared Absorption (IR) When electron microscopy was applied to asbestos analysis, hundreds of fibers were discovered present too small to be visible in any light microscope. There are two different types of electron microscope used for asbestos analysis: Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). Scanning Electron Microscopy is useful in identifying minerals. The SEM can provide two of the three pieces of information required to identify fibers by electron microscopy: morphology and chemistry. The third is structure as determined by Selected Area Electron Diffraction—SAED which is performed in the TEM. Although the resolution of the SEM is sufficient for very fine fibers to be seen, accuracy of chemical analysis that can be performed on the fibers varies with fiber diameter in fibers of less than 0.2 µm diameter. The TEM is a powerful tool to identify fibers too small to be resolved by light microscopy and should be used in conjunction with this method when necessary. The TEM can provide all three pieces of information required for fiber identification. Most fibers thicker than 1 μm can adequately be defined in the light microscope. The light microscope remains as the best instrument for the determination of mineral type. This is because the minerals under investigation were first described analytically with the light microscope. It is inexpensive and gives positive identification for most samples analyzed. Further, when optical techniques are inadequate, there is ample indication that alternative techniques should be used for complete identification of the sample. #### 1.2. Principle Minerals consist of atoms that may be arranged in random order or in a regular arrangement. Amorphous materials have atoms in random order while crystalline materials have long range order. Many materials are transparent to light, at least for small particles or for thin sections. The properties of these materials can be investigated by the effect that the material bas on light passing through it. The six asbestos minerals are all crystalline with particular properties that have been identified and cataloged. These six minerals are anisotropic. They have a regular array of atoms, but the arrangement is not the same in all directions. Each major direction of the crystal presents a different regularity. Light photons travelling in each of these main directions will encounter different electrical neighborhoods, affecting the path and time of travel. The techniques outlined in this method use the fact that light traveling through fibers or crystals in different directions will behave differently, but predictably. The behavior of the light as it travels through a crystal can be measured and compared with known or determined values to identify the mineral species. Usually, Polarized Light Microscopy (PLM) is performed with strain-free objectives on a bright-field microscope platform. This would limit the resolution of the microscope to about 0.4 µm. Because OSHA requires the counting and identification of fibers visible in phase contrast, the phase contrast platform is used to visualize the fibers with the polarizing elements added into the light path. Polarized light methods cannot identify fibers finer than about 1 µm in diameter even though they are visible. The finest fibers are usually identified by inference from the presence of larger, identifiable fiber bundles. When fibers are present, but not identifiable by light microscopy, use either SEM or TEM to determine the fiber identity # 1.3. Advantages and Disadvantages The advantages of light microcopy are: (a) Basic identification of the materials was first performed by light microscopy and gross analysis. This provides a large base of published information against which to check analysis and analytical technique. (b) The analysis as an analytical technique. (b) The analysis is specific to fibers. The minerals present can exist in asbestiform, fibrous, prismatic, or massive varieties all at the same time. Therefore, bulk methods of analysis such as X-ray diffraction, IR analysis, DTA, etc. are inappropriate where the material is not known to be fibrous. (c) The analysis is quick, requires little preparation time, and can be performed onsite if a suitably equipped microscope is available. The disadvantages are: (a) Even using phase-polar illumination, not all the fibers present may be seen. This is a problem for very low asbestos concentrations where agglomerations or large bundles of fibers may not be present to allow identification by inference. (b) The method requires a great degree of sophistication on the part of the microscopist. An analyst is only as useful as his mental catalog of images. Therefore, a microscopist's accuracy is enhanced by experience. The mineralogical training of the analyst is very important. It is the basis on which subjective decisions are made. (c) The method uses only a tiny amount of material for analysis. This may lead to sampling
bias and false results (high or low). This is especially true if the sample is severely inhomogeneous. (d) Fibers may be bound in a matrix and not distinguishable as fibers so identification cannot be made. #### 1.4. Method Performance 1.4.1. This method can be used for determination of asbestos content from 0 to 100% asbestos. The detection limit has not been adequately determined, although for selected samples, the limit is very low. depending on the number of particles examined. For mostly homogeneous, finely divided samples, with no difficult fibrous interferences, the detection limit is below 1%. For inhomogeneous samples (most samples), the detection limit remains undefined. NIST has conducted proficiency testing of laboratories on a national scale. Although each round is reported statistically with an average, control limits, etc., the results indicate a difficulty in establishing precision especially in the low concentration range. It is suspected that there is significant bias in the low range especially near 1%. EPA tried to remedy this by requiring a mandatory point counting scheme for samples less than 10%. The point counting procedure is tedious, and may introduce significant biases of its own. It has not been incorporated into this method. 1.4.2. The precision and accuracy of the quantitation tests performed in this method are unknown. Concentrations are easier to determine in commercial products where asbestos was deliberately added because the amount is usually more than a few percent. An analyst's results can be "calibrated" against the known amounts added by the manufacturer. For geological samples, the degree of homogeneity affects the precision. 1.4.3. The performance of the method is analyst dependent. The analyst must choose carefully and not necessarily randomly the portions for analysis to assure that detection of asbestos occurs when it is present. For this reason, the analyst must have adequate training in sample preparation, and experience in the location and identification of asbestos in samples. This is usually accomplished through substantial on-the-job training as well as formal education in mineralogy and microscopy. # 1.5. Interferences Any material which is long, thin, and small enough to be viewed under the microscope can be considered an interference for asbestos. There are literally hundreds of interferences in workplaces. The techniques described in this method are normally sufficient to eliminate the interferences. An analyst's success in eliminating the interferences depends on proper training. Asbestos minerals belong to two mineral families: the serpentines and the amphiboles. In the serpentine family, the only common fibrous mineral is chrysotile. Occasionally, the mineral antigorite occurs in a fibril habit with morphology similar to the amphiboles. The amphibole minerals consist of a score of different minerals of which only five are regulated by federal standard: amosite, crocidolite, anthophyllite asbestos, tremolite asbestos and actinolite asbestos. These are the only amphibole minerals that have been commercially exploited for their fibrous properties; however, the rest can and do occur occasionally in asbestiform habit. In addition to the related mineral interferences, other minerals common in building material may present a problem for some microscopists: gypsum, anhydrite, brucite, quartz fibers, talc fibers or ribbons, wollastonite, perlite, attapulgite, etc. Other fibrous materials commonly present in workplaces are: fiberglass, mineral wool, ceramic wool, refractory ceramic fibers, kevlar, nomex, synthetic fibers, graphite or carbon fibers, cellulose (paper or wood) fibers, metal fibers, etc. Matrix embedding material can sometimes be a negative interference. The analyst may not be able to easily extract the fibers from the matrix in order to use the method. Where possible, remove the matrix before the analysis, taking careful note of the loss of weight. Some common matrix materials are: vinyl, rubber, tar, paint, plant fiber, cement, and epoxy. A further negative interference is that the asbestos fibers themselves may be either too small to be seen in Phase contrast Microscopy (PCM) or of a very low fibrous quality, having the appearance of plant fibers. The analyst's ability to deal with these materials increases with experience. #### 1.6. Uses and Occupational Exposure - Asbestos is ubiquitous in the environment. More than 40% of the land area of the United States is composed of minerals which may contain asbestos. Fortunately, the actual formation of great amounts of asbestos is relatively rare. Nonetheless, there are locations in which environmental exposure can be severe such as in the Serpentine Hills of California. There are thousands of uses for asbestos in industry and the home. Asbestos abatement workers are the most current segment of the population to have occupational exposure to great amounts of asbestos. If the material is undisturbed, there is no exposure. Exposure occurs when the asbestos-containing material is abraded or otherwise disturbed during maintenance operations or some other activity. Approximately 95% of the asbestos in place in the United States is chrysotile. Amosite and crocidolite make up nearly all the difference. Tremolite and anthophyllite make up a very small percentage. Tremolite is found in extremely small amounts in certain chrysotile deposits. Actinolite exposure is probably greatest from environmental sources, but has been identified in vermiculite containing, sprayed-on insulating materials which may have been certified as asbestos-free. 1.7. Physical and Chemical Properties The nominal chemical compositions for the asbestos minerals were given in Section 1. Compared to cleavage fragments of the same minerals, asbestiform fibers possess a high tensile strength along the fiber axis. They are chemically inert, non-combustible, and heat resistant. Except for chrysotile, they are insoluble in Hydrochloric acid (HCl). Chrysotile is slightly soluble in HCl. Asbestos has high electrical resistance and good sound absorbing characteristics. It can be woven into cables, fabrics or other textiles, or matted into papers, felts, and mats. 1.8. Toxicology (This Section is for Information Only and Should Not Be Taken as OSHA Policy) Possible physiologic results of respiratory exposure to asbestos are mesothelioma of the pleura or peritoneum, interstitial fibrosis, asbestosis, pneumoconiosis, or respiratory cancer. The possible consequences of asbestos exposure are detailed in the NIOSH Criteria Document or in the OSHA Asbestos Standards 29 CFR 1910.1001 and 29 CFR 1926.1101. #### 2. Sampling Procedure #### 2.1. Equipment for Sampling - (a) Tube or cork borer sampling device - (b) Knife - (c) 20 mL scintillation vial or similar vial - (d) Sealing encapsulant #### 2.2. Safety Precautions Asbestos is a known carcinogen. Take care when sampling. While in an asbestoscontaining atmosphere, a properly selected and fit-tested respirator should be worn. Take samples in a manner to cause the least amount of dust. Follow these general guidelines: - (a) Do not make unnecessary dust. - (b) Take only a small amount (1 to 2 g). - (c) Tightly close the sample container. - (d) Use encapsulant to seal the spot where the sample was taken, if necessary. # 2.3. Sampling Procedure Samples of any suspect material should be taken from an inconspicuous place. Where the material is to remain, seal the sampling wound with an encapsulant to eliminate the potential for exposure from the sample site. Microscopy requires only a few milligrams of material. The amount that will fill a 20 mL scintillation vial is more than adequate. Be sure to collect samples from all layers and phases of material. If possible, make separate samples of each different phase of the material. This will aid in determining the actual hazard. DO NOT USE ENVELOPES, PLASTIC OR PAPER BAGS OF ANY KIND TO COLLECT SAMPLES. The use of plastic bags presents a contamination hazard to laboratory personnel and to other samples. When these containers are opened, a bellows effect blows fibers out of the container onto everything, including the person opening the container. If a cork-borer type sampler is available, push the tube through the material all the way, so that all layers of material are sampled. Some samplers are intended to be disposable. These should be capped and sent to the laboratory. If a non-disposable cork borer is used, empty the contents into a scintillation vial and send to the laboratory Vigorously and completely clean the cork borer between samples. #### 2.4 Shipment Samples packed in glass vials must not touch or they might break in shipment. (a) Seal the samples with a sample seal (such as the OSHA 21) over the end to guard against tampering and to identify the sample. (b) Package the bulk samples in separate packages from the air samples. They may cross-contaminate each other and will invalidate the results of the air samples. (c) Include identifying paperwork with the samples, but not in contact with the suspected asbestos. (d) To maintain sample accountability, ship the samples by certified mail, overnight express, or hand carry them to the laboratory. #### 3. Analysis The analysis of asbestos samples can be divided into two major parts: sample preparation and microscopy. Because of the different asbestos uses that may be encountered by the analyst, each sample may need different preparation steps. The choices are outlined below. There are several different tests that are performed to identify the asbestos species and determine the percentage. They will be explained below. #### 3.1. Safety - (a) Do not create unnecessary dust. Handle the samples in HEPA-filter equipped hoods. If samples are received in bags, envelopes or other inappropriate container, open them only in a hood having a face velocity at or greater than 100 fpm. Transfer a small amount to a scintillation
vial and only handle the smaller amount. - (b) Open samples in a hood, never in the open lab area. - (c) Index of refraction oils can be toxic. Take care not to get this material on the skin. Wash immediately with soap and water if this happens. (d) Samples that have been heated in the muffle furnace or the drying oven may be hot. Handle them with tongs until they are cool enough to handle. (e) Some of the solvents used, such as THF (tetrahydrofuran), are toxic and should only be handled in an appropriate fume hood and according to instructions given in the Material Safety Data Sheet (MSDS). # 3.2. Equipment (a) Phase contrast microscope with 10x, 16x and 40x objectives, 10x wide-field eyepieces, G-22 Walton-Beckett graticule, Whipple disk, polarizer, analyzer and first order red or gypsum plate, 100 Watt illuminator, rotating position condenser with oversize phase rings, central stop dispersion objective, Kohler illumination and a rotating mechanical stage. (b) Stereo microscope with reflected light illumination, transmitted light illumination, polarizer, analyzer and first order red or gypsum plate, and rotating stage. (c) Negative pressure hood for the stereo microscope - (d) Muffle furnace capable of 600 °C - (e) Drying oven capable of 50—150 ℃ - (f) Aluminum specimen pans - (g) Tongs for handling samples in the - (h) High dispersion index of refraction oils (Special for dispersion staining.) - n = 1.550 - n = 1.585 - n = 1.590 - n = 1.605 - n = 1.620 - n = 1.670n = 1.680 - n = 1.690 - (i) A set of index of refraction oils from about n=1.350 to n=2.000 in n=0.005 increments. (Standard for Becke line analysis.) - (j) Glass slides with painted or frosted ends 1×3 inches 1mm thick, precleaned. - (k) Cover Slips 22×22 mm, #11/2 - (l) Paper clips or dissection needles - (m) Hand grinder - (n) Scalpel with both #10 and #11 blades - (o) 0.1 molar HCl - (p) Decalcifying solution (Baxter Scientific Products) Ethylenediaminetetraacetic Acid, | Tetrasodium | 0.7 g/l | |---------------------------|--------------| | Sodium Potassium Tartrate | | | Hydrochloric Acid | 99.2 g/liter | | Sodium Tartrate | | - (q) Tetrahydrofuran (THF) - (r) Hotplate capable of 60 °C - (s) Balance - (t) Hacksaw blade - (u) Ruby mortar and pestle #### 3.3. Sample Pre-Preparation Sample preparation begins with prepreparation which may include chemical reduction of the matrix, heating the sample to dryness or heating in the muffle furnace. The end result is a sample which has been reduced to a powder that is sufficiently fine to fit under the cover slip. Analyze different phases of samples separately, e.g., tile and the tile mastic should be analyzed separately as the mastic may contain asbestos while the tile may not. #### (a) Wet samples Samples with a high water content will not give the proper dispersion colors and must be dried prior to sample mounting. Remove the lid of the scintillation vial, place the bottle in the drying oven and heat at 100 °C to dryness (usually about 2 h). Samples which are not submitted to the lab in glass must be removed and placed in glass vials or aluminum weighing pans before placing them in the drying oven. # (b) Samples With Prganic Interference— Muffle Furnace These may include samples with tar as a matrix, vinyl asbestos tile, or any other organic that can be reduced by heating. Remove the sample from the vial and weigh in a balance to determine the weight of the submitted portion. Place the sample in a muffle furnace at 500 °C for 1 to 2 h or until all obvious organic material has been removed. Retrieve, cool and weigh again to determine the weight loss on ignition. This is necessary to determine the asbestos content of the submitted sample, because the analyst will be looking at a reduced sample. Note: Heating above 600 °C will cause the sample to undergo a structural change which, given sufficient time, will convert the chrysotile to forsterite. Heating even at lower temperatures for 1 to 2 h may have a measurable effect on the optical properties of the minerals. If the analyst is unsure of what to expect, a sample of standard asbestos should be heated to the same temperature for the same length of time so that it can be examined for the proper interpretation. ### (c) Samples With Organic Interference—THF Vinyl asbestos tile is the most common material treated with this solvent, although, substances containing tar will sometimes yield to this treatment. Select a portion of the material and then grind it up if possible. Weigh the sample and place it in a test tube. Add sufficient THF to dissolve the organic matrix. This is usually about 4 to 5 mL. Remember, THF is highly flammable. Filter the remaining material through a tared silver membrane, dry and weigh to determine how much is left after the solvent extraction. Further process the sample to remove carbonate or mount directly. # (d) Samples With Carbonate Interference Carbonate material is often found on fibers and sometimes must be removed in order to perform dispersion microscopy. Weigh out a portion of the material and place it in a test tube. Add a sufficient amount of 0.1 M HCl or decalcifying solution in the tube to react all the carbonate as evidenced by gas formation; i.e., when the gas bubbles stop, add a little more solution. If no more gas forms, the reaction is complete. Filter the material out through a tared silver membrane, dry and weigh to determine the weight lost. # 3.4. Sample Preparation Samples must be prepared so that accurate determination can be made of the asbestos type and amount present. The following steps are carried out in the low-flow hood (a low-flow hood has less than 50 fpm flow): (1) If the sample has large lumps, is hard, or cannot be made to lie under a cover slip, the grain size must be reduced. Place a small amount between two slides and grind the material between them or grind a small amount in a clean mortar and pestle. The choice of whether to use an alumina, ruby, or diamond mortar depends on the hardness of the material. Impact damage can alter the asbestos mineral if too much mechanical shock occurs. (Freezer mills can completely destroy the observable crystallinity of asbestos and should not be used). For some samples, a portion of material can be shaved off with a scalpel, ground off with a hand grinder or hack saw blade. The preparation tools should either be disposable or cleaned thoroughly. Use vigorous scrubbing to loosen the fibers during the washing. Rinse the implements with copious amounts of water and air-dry in a dust-free environment. (2) If the sample is powder or has been reduced as in (1) above, it is ready to mount. Place a glass slide on a piece of optical tissue and write the identification on the painted or frosted end. Place two drops of index of refraction medium n=1.550 on the slide. (The medium n=1.550 is chosen because it is the matching index for chrysotile. Dip the end of a clean paper-clip or dissecting needle into the droplet of refraction medium on the slide to moisten it. Then dip the probe into the powder sample. Transfer what sticks on the probe to the slide. The material on the end of the probe should have a diameter of about 3 mm for a good mount. If the material is very fine, less sample may be appropriate. For non-powder samples such as fiber mats. forceps should be used to transfer a small amount of material to the slide. Stir the material in the medium on the slide. spreading it out and making the preparation as uniform as possible. Place a cover-slip on the preparation by gently lowering onto the slide and allowing it to fall "trapdoor" fashion on the preparation to push out any bubbles. Press gently on the cover slip to even out the distribution of particulate on the slide. If there is insufficient mounting oil on the slide, one or two drops may be placed near the edge of the coverslip on the slide. Capillary action will draw the necessary amount of liquid into the preparation. Remove excess oil with the point of a laboratory wiper. Treat at least two different areas of each phase in this fashion. Choose representative areas of the sample. It may be useful to select particular areas or fibers for analysis. This is useful to identify asbestos in severely inhomogeneous samples. When it is determined that amphiboles may be present, repeat the above process using the appropriate high-dispersion oils until an identification is made or all six asbestos minerals have been ruled out. Note that percent determination must be done in the index medium 1.550 because amphiboles tend to disappear in their matching mediums. # 3.5. Analytical Procedure Note: This method presumes some knowledge of mineralogy and optical petrography. The analysis consists of three parts: The determination of whether there is asbestos present, what type is present and the determination of how much is present. The general flow of the analysis is: (1) Gross examination. - (2) Examination under polarized light on the stereo microscope. - (3) Examination by phase-polar illumination on the compound phase microscope. - (4) Determination of species by dispersion stain. Examination by Becke line analysis may also be used; however, this is usually more cumbersome for asbestos determination. (5) Difficult samples may need to be analyzed by SEM or TEM, or the results from those techniques combined with light microscopy for a definitive identification. Identification of a particle as asbestos requires that it be asbestiform. Description of particles should follow the suggestion of Campbell. (Figure 1) BILLING CODE 4510-28-P Figure 1. Particle definitions showing mineral growth habits. From the U.S. Bureau of Mines BILLING CODE 4510-26-C For the purpose of regulation, the mineral must be one of the six minerals covered and must be in the asbestos growth habit. Large specimen samples of asbestos generally have the gross appearance of wood. Fibers are easily parted from it. Asbestos fibers are very long compared
with their widths. The fibers have a very bigh tensile strength as demonstrated by bending without breaking. Asbestos fibers exist in bundles that are easily parted, show longitudinal fine structure and may be tufted at the ends showing "bundle of sticks" morphology. In the microscope some of these properties may not be observable. Amphiboles do not always show striations along their length even when they are asbestos. Neither will they always show tufting. They generally do not show a curved nature except for very long fibers. Asbestos and asbestiform minerals are usually characterized in groups by extremely high aspect ratios (greater than 100:1). While aspect ratio analysis is useful for characterizing populations of fibers, it cannot be used to identify individual fibers of intermediate to short aspect ratio. Observation of many fibers is often necessary to determine whether a sample consists of 'cleavage fragments' or of asbestos fibers. Most cleavage fragments of the asbestos minerals are easily distinguishable from true asbestos fibers. This is because true cleavage fragments usually have larger diameters than 1 μm. Internal structure of particles larger than this usually shows them to have no internal fibrillar structure. In addition, cleavage fragments of the monoclinic amphiboles show inclined extinction under crossed polars with no compensator. Asbestos fibers usually show extinction at zero degrees or ambiguous extinction if any at all. Morphologically, the larger cleavage fragments are obvious by their blunt or stepped ends showing prismatic habit. Also, they tend to be accular rather than filiform. Where the particles are less than 1 µm in diameter and have an aspect ratio greater than or equal to 3:1, it is recommended that the sample be analyzed by SEM or TEM if there is any question whether the fibers are cleavage fragments or asbestiform particles. Care must be taken when analyzing by electron microscopy because the interferences are different from those in light microscopy and may structurally be very similar to asbestos. The classic interference is between anthophyllite and biopyribole or intermediate fiber. Use the same morphological clues for electron microscopy as are used for light microscopy, e.g. fibril splitting, internal longitudinal striation, fraying, curvature, etc. (1) Gross examination: Examine the sample, preferably in the glass vial. Determine the presence of any obvious fibrous component. Estimate a percentage based on previous experience and current observation. Determine whether any prepreparation is necessary. Determine the number of phases present. This step may be carried out or augmented by observation at 6 to 40× under a stereo microscope. (2) After performing any necessary prepreparation, prepare slides of each phase as described above. Two preparations of the same phase in the same index medium can be made side-by-side on the same glass for convenience. Examine with the polarizing stereo microscope. Estimate the percentage of asbestos based on the amount of birefringent fiber present. (3) Examine the slides on the phase-polar microscopes at magnifications of 160 and 400x. Note the morphology of the fibers. Long, thin, very straight fibers with little curvature are indicative of fibers from the amphibole family. Curved, wavy fibers are usually indicative of chrysotile. Estimate the percentage of asbestos on the phase-polar microscope under conditions of crossed polars and a gypsum plate. Fibers smaller than 1.0 µm in thickness must be identified by inference to the presence of larger identifiable fibers and morphology. If no larger fibers are visible, electron microscopy should be performed. At this point, only a tentative identification can be made. Full identification must be made with dispersion microscopy. Details of the tests are included in the appendices. (4) Once fibers have been determined to be present, they must be identified. Adjust the microscope for dispersion mode and observe the fibers. The microscope has a rotating stage, one polarizing element, and a system for generating dark-field dispersion microscopy (see Section 4.6. of this appendix). Align a fiber with its length parallel to the polarizer and note the color of the Becke lines. Rotate the stage to bring the fiber length perpendicular to the polarizer and note the color. Repeat this process for every fiber or fiber bundle examined. The colors must be consistent with the colors generated by standard asbestos reference materials for a positive identification. In n=1.550, amphiboles will generally show a yellow to straw-yellow color indicating that the fiber indices of refraction are higher than the liquid. If long, thin fibers are noted and the colors are yellow, prepare further slides as above in the suggested matching liquids listed below: | Type of asbestos | Index of refraction | |------------------|---| | Chrysotile | n=1.670 r 1.680.
n=1.690.
n=1.605 nd 1.620. | Where more than one liquid is suggested, the first is preferred; however, in some cases this liquid will not give good dispersion color. Take care to avoid interferences in the other liquid; e.g., wollastonite in n=1.620 will give the same colors as tremolite. In n=1.605 wollastonite will appear yellow in all directions. Wollastonite may be determined under crossed polars as it will change from blue to yellow as it is rotated along its fiber axis by tapping on the cover slip. Asbestos minerals will not change in this way. Determination of the angle of extinction may, when present, aid in the determination of anthophyllite from tremolite. True asbestos fibers usually have 0° extinction or ambiguous extinction, while cleavage fragments have more definite extinction. Continue analysis until both preparations have been examined and all present species of asbestos are identified. If there are no fibers present, or there is less than 0.1% present, end the analysis with the minimum number of slides (2). (5) Some fibers have a coating on them which makes dispersion microscopy very difficult or impossible. Becke line analysis or electron microscopy may be performed in those cases. Determine the percentage by light microscopy. TEM analysis tends to overestimate the actual percentage present. (6) Percentage determination is an estimate of occluded area, tempered by gross observation. Gross observation information is used to make sure that the high magnification microscopy does not greatly over- or underestimate the amount of fiber present. This part of the analysis requires a great deal of experience. Satisfactory models for asbestos content analysis have not yet been developed, although some models based on metallurgical grain-size determination have found some utility. Estimation is more easily handled in situations where the grain sizes visible at about 160x are about the same and the sample is relatively homogeneous. View all of the area under the cover slip to make the percentage determination. View the fields while moving the stage, paying attention to the clumps of material. These are not usually the best areas to perform dispersion microscopy because of the interference from other materials. But, they are the areas most likely to represent the accurate percentage in the sample. Small amounts of asbestos require slower scanning and more frequent analysis of individual fields. Report the area occluded by asbestos as the concentration. This estimate does not generally take into consideration the~ difference in density of the different species present in the sample. For most samples this is adequate. Simulation studies with similar materials must be carried out to apply microvisual estimation for that purpose and is beyond the scope of this procedure. (7) Where successive concentrations have been made by chemical or physical means, the amount reported is the percentage of the material in the "as submitted" or original state. The percentage determined by microscopy is multiplied by the fractions remaining after pre-preparation steps to give the percentage in the original sample. For example: Step 1. 60% remains after heating at 550 °C for 1 h. Step 2. 30% of the residue of step 1 remains after dissolution of carbonate in 0.1 m HCl. Step 3. Microvisual estimation determines that 5% of the sample is chrysotile asbestos. The reported result is: R=(Microvisual result in percent)x(Fraction remaining after step 2)x(Fraction remaining of original sample after step 1) R=(5)×(.30)×(.60)=0.9% (8) Report the percent and type of asbestos present. For samples where asbestos was identified, but is less than 1.0%, report "Asbestos present, less than 1.0%." There must have been at least two observed fibers or fiber bundles in the two preparations to be reported as present. For samples where asbestos was not seen, report as "None Detected." #### Auxiliary Information Because of the subjective nature of asbestos analysis, certain concepts and procedures need to be discussed in more depth. This information will help the analyst understand why some of the procedures are carried out the way they are. #### 4.1. Light Light is electromagnetic energy. It travels from its source in packets called quanta. It is instructive to consider light as a plane wave. The light has a direction of travel. Perpendicular to this and mutually perpendicular to each other, are two vector components. One is the magnetic vector and the other is the electric vector. We shall only be concerned with the electric vector. In this description, the interaction of the vector and the mineral will describe all the observable phenomena. From a light source such a microscope illuminator, light travels in all different direction from the filament. In any given direction away from the filament, the electric vector is perpendicular to the direction of travel of a light ray. While perpendicular, its orientation is random about the travel axis.
If the electric vectors from all the light rays were lined up by passing the light through a filter that would only let light rays with electric vectors oriented in one direction pass, the light would then be *POLARIZED*. Polarized light interacts with matter in the direction of the electric vector. This is the polarization direction. Using this property it is possible to use polarized light to probe different materials and identify them by how they interact with light. The speed of light in a vacuum is a constant at about 2.99×108 m/s. When light travels in different materials such as air, water, minerals or oil, it does not travel at this speed. It travels slower. This slowing is a function of both the material through which the light is traveling and the wavelength or frequency of the light. In general, the more dense the material, the slower the light travels. Also, generally, the higher the frequency, the slower the light will travel The ratio of the speed of light in a vacuum to that in a material is called the index of refraction (n). It is usually measured at 589 nm (the sodium D line). If white light (light containing all the visible wavelengths) travels through a material, rays of longer wavelengths will travel faster than those of shorter wavelengths, this separation is called dispersion. Dispersion is used as an identifier of materials as described in Section 4.6. ## 4.2. Material Properties Materials are either amorphous or crystalline. The difference between these two descriptions depends on the positions of the atoms in them. The atoms in amorphous materials are randomly arranged with no long range order. An example of an amorphous material is glass. The atoms in crystalline materials, on the other hand, are in regular arrays and have long range order. Most of the atoms can be found in highly predictable locations. Examples of crystalline material are salt, gold, and the asbestos minerals. It is beyond the scope of this method to describe the different types of crystalline materials that can be found, or the full description of the classes into which they can fall. However, some general crystallography is provided below to give a foundation to the procedures described. With the exception of anthophyllite, all the asbestos minerals belong to the monoclinic crystal type. The unit cell is the basic repeating unit of the crystal and for monoclinic crystals can be described as having three unequal sides, two 90° angles and one angle not equal to 90°. The orthorhombic group, of which anthophyllite is a member has three unequal sides and three 90° angles. The unequal sides are a consequence of the complexity of fitting the different atoms into the unit cell. Although the atoms are in a regular array, that array is not symmetrical in all directions. There is long range order in the three major directions of the crystal. However, the order is different in each of the three directions. This has the effect that the index of refraction is different in each of the three directions. Using polarized light, we can investigate the index of refraction in each of the directions and identify the mineral or material under investigation. The indices α , β , and γ are used to identify the lowest, middle, and highest index of refraction respectively. The direction, associated with a is called the fast axis. Conversely, the z direction is associated with y and is the slow direction. Crocidolite has α along the fiber length making it "length-fast". The remainder of the asbestos minerals have the yaxis along the fiber length. They are called "length-slow". This orientation to fiber length is used to aid in the identification of asbestos. # 4.3. Polarized Light Technique Polarized light microscopy as described in this section uses the phase-polar microscope described in Section 3.2. A phase contrast microscope is fitted with two polarizing elements, one below and one above the sample. The polarizers have their polarization directions at right angles to each other. Depending on the tests performed, there may be a compensator between these two polarizing elements. A compensator is a piece of mineral with known properties that 'compensates" for some deficiency in the optical train. Light emerging from a polarizing element has its electric vector pointing in the polarization direction of the element. The light will not be subsequently transmitted through a second element set at a right angle to the first element. Unless the light is altered as it passes from one element to the other, there is no transmission of light. # 4.4. Angle of Extinction Crystals which have different crystal regularity in two or three main directions are said to be anisotropic. They have a different index of refraction in each of the main directions. When such a crystal is inserted between the crossed polars, the field of view is no longer dark but shows the crystal in color. The color depends on the properties of the crystal. The light acts as if it travels through the crystal along the optical axes. If a crystal optical axis were lined up along one of the polarizing directions (either the polarizer or the analyzer) the light would appear to travel only in that direction, and it would blink out or go dark. The difference in degrees between the fiber direction and the angle at which it blinks out is called the angle of extinction. When this angle can be measured, it is useful in identifying the mineral. The procedure for measuring the angle of extinction is to first identify the polarization direction in the microscope. A commercial alignment slide can be used to establish the polarization directions or use anthophyllite or another suitable mineral. This mineral has a zero degree angle of extinction and will go dark to extinction as it aligns with the polarization directions. When a fiber of anthophyllite has gone to extinction, align the eyepiece reticle or graticule with the fiber so that there is a visual cue as to the direction of polarization in the field of view. Tape or otherwise secure the eyepiece in this position so it will not After the polarization direction has been identified in the field of view, move the particle of interest to the center of the field of view and align it with the polarization direction. For fibers, align the fiber along this direction. Note the angular reading of the rotating stage. Looking at the particle, rotate the stage until the fiber goes dark or "blinks out". Again note the reading of the stage. The difference in the first reading and the second is an angle of extinction. The angle measured may vary as the orientation of the fiber changes about its long axis. Tables of mineralogical data usually report the maximum angle of extinction. Asbestos forming minerals, when they exhibit an angle of extinction, usually do show an angle of extinction close to the reported maximum, or as appropriate depending on the substitution chemistry. ## 4.5. Crossed Polars with Compensator When the optical axes of a crystal are not lined up along one of the polarizing directions (either the polarizer or the analyzer) part of the light travels along one axis and part travels along the other visible axis. This is characteristic of birefringent materials. The color depends on the difference of the two visible indices of refraction and the thickness of the crystal. The maximum difference available is the difference between the α and the γ axes. This maximum difference is usually tabulated as the birefringence of the crystal. For this test, align the fiber at 45° to the polarization directions in order to maximize the contribution to each of the optical axes. The colors seen are called retardation colors. They arise from the recombination of light which has traveled through the two separate directions of the crystal. One of the rays is retarded behind the other since the light in that direction travels slower. On recombination, some of the colors which make up white light are enhanced by constructive interference and some are suppressed by destructive interference. The result is a color dependent on the difference between the indices and the thickness of the crystal. The proper colors, thicknesses, and retardations are shown on a Michel-Levy chart. The three items, retardation, thickness and birefringence are related by the following relationship: $R=t(n_{\gamma}-n_{\alpha})$ R=retardation, t=crystal thickness in μm , and $n_{\alpha \gamma}$ =indices of refraction. Examination of the equation for asbestos minerals reveals that the visible colors for almost all common asbestos minerals and fiber sizes are shades of gray and black. The eye is relatively poor at discriminating different shades of gray. It is very good at discriminating different colors. In order to compensate for the low retardation, a compensator is added to the light train between the polarization elements. The compensator used for this test is a gypsum plate of known thickness and birefringence. Such a compensator when oriented at 45° to the polarizer direction, provides a retardation of 530 nm of the 530 nm wavelength color. This enhances the red color and gives the background a characteristic red to redmagenta color. If this "full-wave" compensator is in place when the asbestos preparation is inserted into the light train, the colors seen on the fibers are quite different. Gypsum, like asbestos has a fast axis and a slow axis. When a fiber is aligned with its fast axis in the same direction as the fast axis of the gypsum plate, the ray vibrating in the slow direction is retarded by both the asbestos and the gypsum. This results in a higher retardation than would be present for either of the two minerals. The color seen is a second order blue. When the fiber is rotated 90° using the rotating stage, the slow direction of the fiber is now aligned with the fast direction of the gypsum and the fast direction of the fiber is aligned
with the slow direction of the gypsum. Thus, one ray vibrates faster in the fast direction of the gypsum, and slower in the slow direction of the fiber; the other ray will vibrate slower in the slow direction of the gypsum and faster in the fast direction of the fiber. In this case, the effect is subtractive and the color seen is a first order yellow. As long as the fiber thickness does not add appreciably to the color, the same basic colors will be seen for all asbestos types except crocidolite. In crocidolite the colors will be weaker, may be in the opposite directions, and will be altered by the blue absorption color natural to crocidolite. Hundreds of other materials will give the same colors as asbestos, and therefore, this test is not definitive for asbestos. The test is useful in discriminating against fiberglass or other amorphous fibers such as some synthetic fibers. Certain synthetic fibers will show retardation colors different than asbestos; however, there are some forms of polyethylene and aramid which will show morphology and retardation colors similar to asbestos minerals. This test must be supplemented with a positive identification test when birefringent fibers are present which can not be excluded by morphology. This test is relatively ineffective for use on fibers less than 1 µm in diameter. For positive confirmation TEM or SEM should be used if no larger bundles or fibers are visible. # 4.6. Dispersion Staining Dispersion microscopy or dispersion staining is the method of choice for the identification of asbestos in bulk materials. Becke line analysis is used by some laboratories and yields the same results as does dispersion staining for asbestos and can be used in lieu of dispersion staining. Dispersion staining is performed on the same platform as the phase-polar analysis with the analyzer and compensator removed. One polarizing element remains to define the direction of the light so that the different indices of refraction of the fibers may be separately determined. Dispersion microscopy is a dark-field technique when used for asbestos. Particles are imaged with scattered light. Light which is unscattered is blocked from reaching the eye either by the back field image mask in a McCrone objective or a back field image mask in the phase condenser. The most convenient method is to use the rotating phase condenser to move an oversized phase ring into place. The ideal size for this ring is for the central disk to be just larger than the objective entry aperture as viewed in the back focal plane. The larger the disk, the less scattered light reaches the eye. This will have the effect of diminishing the intensity of dispersion color and will shift the actual color seen. The colors seen vary even on microscopes from the same manufacturer. This is due to the different bands of wavelength exclusion by different mask sizes. The mask may either reside in the condenser or in the objective back focal plane. It is imperative that the analyst determine by experimentation with asbestos standards what the appropriate colors should be for each asbestos type. The colors depend also on the temperature of the preparation and the exact chemistry of the asbestos. Therefore, some slight differences from the standards should be allowed. This is not a serious problem for commercial asbestos uses. This technique is used for identification of the indices of refraction for fibers by recognition of color. There is no direct numerical readout of the index of refraction. Correlation of color to actual index of refraction is possible by referral to published conversion tables. This is not necessary for the analysis of asbestos. Recognition of appropriate colors along with the proper morphology are deemed sufficient to identify the commercial asbestos minerals. Other techniques including SEM, TEM, and XRD may be required to provide additional information in order to identify other types of asbestos. Make a preparation in the suspected matching high dispersion oil, e.g., n=1.550 for chrysotile. Perform the preliminary tests to determine whether the fibers are birefringent or not. Take note of the morphological character. Wavy fibers are indicative of chrysotile while long, straight, thin, frayed fibers are indicative of amphibole asbestos. This can aid in the selection of the appropriate matching oil. The microscope is set up and the polarization direction is noted as in Section 4.4. Align a fiber with the polarization direction. Note the color. This is the color parallel to the polarizer. Then rotate the fiber rotating the stage 90° so that the polarization direction is across the fiber. This is the perpendicular position. Again note the color. Both colors must be consistent with standard asbestos minerals in the correct direction for a positive identification of asbestos. If only one of the colors is correct while the other is not, the identification is not positive. If the colors in both directions are bluish-white, the analyst has chosen a matching index oil which is higher than the correct matching oil, e.g. the analyst has used n=1.620 where chrysotile is present. The next lower oil (Section 3.5.) should be used to prepare another specimen. If the color in both directions is yellow-white to straw-yellowwhite, this indicates that the index of the oil is lower than the index of the fiber, e.g. the preparation is in n=1.550 while anthophyllite is present. Select the next higher oil (Section 3.5.) and prepare another slide. Continue in this fashion until a positive identification of all asbestos species present has been made or all possible asbestos species have been ruled out by negative results in this test. Certain plant fibers can have similar dispersion colors as asbestos. Take care to note and evaluate the morphology of the fibers or remove the plant fibers in pre- preparation. Coating material on the fibers such as carbonate or vinyl may destroy the dispersion color. Usually, there will be some outcropping of fiber which will show the colors sufficient for identification. When this is not the case, treat the sample as described in Section 3.3. and then perform dispersion staining. Some samples will yield to Becke line analysis if they are coated or electron microscopy can be used for identification. # 5. References - 5.1. Crane, D.T., Asbestos in Air, OSHA method ID160, Revised November 1992. - 5.2. Ford, W.E., *Dana's Textbook of Mineralogy;* Fourth Ed.; John Wiley and Son, New York, 1950, p. vii. - 5.3. Selikoff, I.J., Lee, D.H.K., Asbestos and Disease, Academic Press, New York, 1978, pp. 3,20. - 5.4. Women Inspectors of Factories. Annual Report for 1898, H.M. Statistical Office, London, p. 170 (1898). - 5.5. Selikoff, I.J., Lee, D.H.K., Asbestos and Disease, Academic Press, New York, 1978, pp. 26,30. - 5.6. Campbell, W.J., et al, Selected Silicate Minerals and Their Asbestiform Varieties, United States Department of the Interior, Bureau of Mines, Information Circular 8751, 1977. - 5.7. Asbestos, Code of Federal Regulations, 29 CFR 1910.1001 and 29 CFR 1926.58. - 5.8. National Emission Standards for Hazardous Air Pollutants; Asbestos NESHAP Revision, Federal Register, Vol. 55, No. 224, 20 November 1990, p. 48410. - 20 November 1990, p. 48410. 5.9. Ross, M. The Asbestos Minerals: Definitions, Description, Modes of Formation, Physical and Chemical Properties and Health Risk to the Mining Community, Nation Bureau of Standards Special Publication, Washington, D.C., 1977. - 5.10. Lilis, R., Fibrous Zeolites and Endemic Mesothelioma in Cappadocia, Turkey, J. Occ Medicine, 1981, 23,(8),548– - 5.11. Occupational Exposure to Asbestos—1972, U.S. Department of Health, Education and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, HSM-72- 5.12. Campbell, W.J., et al, Relationship of Mineral Habit to Size Characteristics for Tremolite Fragments and Fibers, United States Department of the Interior, Bureau of Mines, Information Circular 8367, 1979. 5.13. Mefford, D., DCM Laboratory, Denver. private communication, July 1987. 5.14. Deer, W.A., Howie, R.A., Zussman, J., Rock Forming Minerals, Longman, Thetford, UK, 1974. 5.15. Kerr, P.F., Optical Mineralogy; Third Ed. McGraw-Hill, New York, 1959. 5.16. Veblen, D.R. (Ed.), Amphiboles and Other Hydrous Pyriboles—Mineralogy, Reviews in Mineralogy. Vol 9A. Michigan. 1982, pp 1-102. 5.17. Dixon, W.C., Applications of Optical Microscopy in the Analysis of Asbestos and Quartz, ACS Symposium Series, No. 120, Analytical Techniques in Occupational Health Chemistry, 1979. 5.18. Polarized Light Microscopy, McCrone Research Institute, Chicago, 1976. 5.19. Asbestos Identification, McCrone Research Institute, G & G printers, Chicago. 5.20. McCrone, W.C., Calculation of Refractive Indices from Dispersion Staining Data, The Microscope, No 37, Chicago, 1989. 5.21. Levadie, B. (Ed.), Asbestos and Other Health Related Silicates, ASTM Technical Publication 834, ASTM, Philadelphia 1982. 5.22. Steel, E. and Wylie, A., Riordan, P.H. (Ed.), Mineralogical Characteristics of Asbestos, Geology of Asbestos Deposits, pp. 93-101, SME-AÏMÉ, 1981. 5.23. Zussman, J., The Mineralogy of Asbestos, Asbestos: Properties, Applications and Hazards, pp. 45-67 Wiley, 1979. Shipyards # PART 1915—[AMENDED] t. The authority citation of 29 CFR part 1915 continues to read as follows: Authority: Sec. 41, Longshore and Harbor Workers Compensation Act (33 U.S.C. 941): secs. 4, 6, 8, Occupational Safety and Health Act of 1970 (29 U.S.C. 653, 655, 657); sec. 4 of the Administrative Procedure Act (5 U.S.C. 553); Secretary of Labor's Order No. 12-71 (36 FR 8754), 8-76 (41 FR 35736) or 1-90 (55 FR 9033), as applicable; 29 CFR part 1911. 2. Section 1915.1001 is revised to read as follows: # § 1915.1001 Asbestos. (a) Scope and application. This section regulates asbestos exposure in all shipyard employment work as defined in 29 CFR 1915, including but not limited to
the following: (1) Demolition or salvage of structures, vessels, and vessel sections where asbestos is present; (2) Removal or encapsulation of materials containing asbestos; (3) Construction, alteration, repair. maintenance, or renovation of vessels, vessel sections, structures, substrates, or portions thereof, that contain asbestos; (4) Installation of products containing asbestos; (5) Asbestos spill/emergency cleanup; (6) Transportation, disposal, storage. containment of and housekeeping activities involving asbestos or products containing asbestos, on the site or location at which construction activities are performed. (7) Coverage under this standard shall be based on the nature of the work operation involving asbestos exposure. (b) Definitions. Aggressive method means removal or disturbance of building/vessel materials by sanding, abrading, grinding, or other method that breaks, crumbles, or otherwise disintegrates intact ACM. Amended water means water to which surfactant (wetting agent) has been added to increase the ability of the liquid to penetrate ACM. Asbestos includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that has been chemically treated and/or altered. For purposes of this standard, "asbestos" includes PACM, as defined Asbestos-containing material, (ACM) means any material containing more than one percent asbestos. Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee. Authorized person means any person authorized by the employer and required by work duties to be present in regulated areas Building/facility owner is the legal entity, including a lessee, which exercises control over management and record keeping functions relating to a building and/or facility in which activities covered by this standard take place. Certified Industrial Hygienist (CIH) means one certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene. Class I asbestos work means activities involving the removal of thermal system insulation or surfacing ACM/PACM. Class II asbestos work means activities involving the removal of ACM which is neither TSI or surfacing ACM. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting: roofing and siding shingles, and construction mastics. Class III asbestos work means repair and maintenance operations, where "ACM", including TSI and surfacing ACM and PACM, may be disturbed. Class IV asbestos work means maintenance and custodial activities during which employees contact ACM and PACM and activities to clean up waste and debris containing ACM and PACM. Clean room means an uncontaminated room having facilities for the storage of employees' street clothing and uncontaminated materials and equipment. Closely resemble means that the major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace. Competent person see "Qualified - Critical barrier means one or more layers of plastic sealed over all openings into a work area or any other physical barrier sufficient to prevent airborne asbestos in a work area from migrating to an adjacent area. Decontamination area means an enclosed area adjacent and connected to the regulated area and consisting of an equipment room, shower area, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos. Demolition means the wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products. Director means the Director, National Institute for Occupational Safety and Health, U.S. Department of Health and Human Services, or designee. Disturbance means contact which releases fibers from ACM or PACM or debris containing ACM or PACM. This term includes activities that disrupt the matrix of ACM or PACM, render ACM or PACM friable, or generate visible debris. Disturbance includes cutting away small amounts of ACM and PACM, no greater than the amount which can be contained in one standard sized glove bag or waste bag, in order to access a building or vessel component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or waste bag which shall not exceed 60 inches in length and width. Employee exposure means that exposure to airborne asbestos that would occur if the employee were not using respiratory protective equipment. Equipment room (change room) means a contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment. Fiber means a particulate form of asbestos, 5 micrometers or longer, with a length-to-diameter ratio of at least 3 to Glovebag means an impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glove-like appendages through which material and tools may be handled. High-efficiency particulate air (HEPA) filter means a filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter. Homogeneous area means an area of surfacing material or thermal system insulation that is uniform in color and Industrial Itygienist means a professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Intact means that the ACM has not crumbled, been pulverized, or otherwise deteriorated so that it is no longer likely to be bound with its matrix. Modification for purposes of paragraph (g)(6)(2), means a changed or altered procedure, material or component of a control system, which replaces a procedure, material or component of a required system. Omitting a procedure or component, or reducing or diminishing the stringency or strength of a material or component of the control system is not a "modification" for purposes of paragraph (g)(6)(ii) of this section. Negative Initial Exposure Assessment means a demonstration by the employer, which complies with the criteria in paragraph (f)(iii) of this section, that employee exposure during an operation is expected to be consistently below the PELs. PACM means "presumed asbestos containing material". Presumed Asbestos Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later than 1980. The designation of a material as "PACM" may be rebutted pursuant to paragraph (k)(4) of this section. Project Designer means a person who has successfully completed the training requirements for an abatement project designer established by 40 U.S.C. § 763.90(g). Qualified person means, in addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I, II, III, and IV work, who is specially trained in a training course which meet the criteria of EPA's Model Accreditation Plan (40 CFR Part 763) for project designer or supervisor, or its equivalent. Regulated area means an area established by the employer to demarcate areas where Class I, II, and III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work accumulate; and a work area within which airborne concentrations of asbestos, exceed or can reasonably be expected to exceed the permissible exposure limit. Requirements for regulated areas are set out in paragraph (e)(6) of this section. Removal means all operations where ACM and/or PACM is taken out or stripped from structures or substrates, and includes demolition operations. Renovation means the modifying of any existing vessel, vessel section, structure, or portion thereof. Repair means overhauling, rebuilding, reconstructing, or reconditioning of vessels, vessel sections, structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates. Surfacing material means material that is sprayed, troweled-on or otherwise applied to surfaces (such as acoustical plaster on ceilings and fireproofing materials on structural members, or other materials on surfaces for acoustical, fireproofing, and other purposes). Surfacing ACM means surfacing material which contains more than 1% asbestos. Thermal system insulation (TSI) means ACM applied to pipes, fittings, boilers, breeching, tanks, ducts or other structural components to prevent heat Thermal system insulation ACM is thermal system insulation which contains more than 1% asbestos. (c) Permissible exposure limits (PELS)—(1) Time-weighted average limit (TWA). The employer shall ensure that no employee is exposed to an airborne concentration of asbestos in excess of 0.1 fiber per cubic centimeter of air as an eight (8) hour time-weighted average (TWA), as determined by the method prescribed in Appendix A of this section, or by an equivalent method. (2) Excursion limit. The employer shall ensure that no employee is exposed to an airborne concentration of asbestos in excess of 1.0 fiber per cubic centimeter of air (1 f/cc) as averaged over a sampling period of thirty (30) minutes, as determined by the method prescribed in Appendix A of this section, or by an equivalent method. (d) Multi-employer worksites. (1) On multi-employer worksites, an employer performing work requiring the establishment of a regulated area shall inform other employers on the site of the nature of the employer's work with asbestos and/or PACM, of the existence of and
requirements pertaining to regulated areas, and the measures taken to ensure that employees of such other employers are not exposed to asbestos. (2) Asbestos hazards at a multiemployer work site shall be abated by the contractor who created or controls the source of asbestos contamination. For example, if there is a significant breach of an enclosure containing Class I work, the employer responsible for erecting the enclosure shall repair the breach immediately. (3) In addition, all employers of employees exposed to asbestos hazards shall comply with applicable protective provisions to protect their employees. For example, if employees working immediately adjacent to a Class I asbestos job are exposed to asbestos due to the inadequate containment of such job, their employer shall either remove the employees from the area until the enclosure breach is repaired; or perform an initial exposure assessment pursuant to paragraph (f)(1) of this section. (4) All employers of employees working adjacent to regulated areas established by another employer on a multi-employer work- site, shall take steps on a daily basis to ascertain the integrity of the enclosure and/or the effectiveness of the control method relied on by the primary asbestos contractor to assure that asbestos fibers do not migrate to such adjacent areas. (5) All general contractors on a shipyard project which includes work covered by this standard shall be deemed to exercise general supervisory authority over the work covered by this standard, even though the general contractor is not qualified to serve as the asbestos "qualified person" as defined by paragraph (b) of this section. As supervisor of the entire project, the general contractor shall ascertain whether the asbestos contractor is in compliance with this standard, and shall require such contractor to come into compliance with this standard when necessary (e) Regulated areas (1) All Class I, II and III asbestos work shall be conducted within regulated areas. All other operations covered by this standard shall be conducted within a regulated area where airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed a PEL. Regulated areas shall comply with the requirements of paragraphs (e) (2), (3), (4) and (5) of this section. (2) Demarcation. The regulated area shall be demarcated in any manner that minimizes the number of persons within the area and protects persons outside the area from exposure to airborne concentrations of asbestos. Where critical barriers or negative pressure enclosures are used, they may demarcate the regulated area. Signs shall be provided and displayed pursuant to the requirements of paragraph (k)(6) of this section. (3) Access. Access to regulated areas shall be limited to authorized persons and to persons authorized by the Act or regulations issued pursuant thereto. (4) Respirators. All persons entering a regulated area where employees are required pursuant to paragraph (h)(2) of this section to wear respirators shall be supplied with a respirator selected in accordance with paragraph (h)(2) of this section. (5) Prohibited activities. The employer shall ensure that employees do not eat, drink, smoke, chew tobacco or gum, or apply cosmetics in the regulated area. (6) Qualified Persons. The employer shall ensure that all asbestos work performed within regulated areas is supervised by a qualified person, as defined in paragraph (b) of this section. The duties of the qualified person are set out in paragraph (o) of this section. (f) Exposure assessments and monitoring—(1) General monitoring criteria. (i) Each employer who has a workplace of work operation where exposure monitoring is required under this section shall perform monitoring to determine accurately the airborne concentrations of asbestos to which employees may be exposed. (ii) Determinations of employee exposure shall be made from breathing zone air samples that are representative of the 8-hour TWA and 30-minute short-term exposures of each employee. (iii) Representative 8-hour TWA employee exposure shall be determined on the basis of one or more samples representing full-shift exposure for employees in each work area. Representative 30-minute short-term employee exposures shall be determined on the basis of one or more samples representing 30 minute exposures associated with operations that are most likely to produce exposures above the excursion limit for employees in each work area. (2) Initial Exposure Assessment. (i) Each employer who has a workplace or work operation covered by this standard shall ensure that a "qualified person" conducts an exposure assessment immediately before or at the initiation of the operation to ascertain expected exposures during that operation or workplace. The assessment must be completed in time to comply with requirements which are triggered by exposure data or the lack of a "negative exposure assessment," and to provide information necessary to assure that all control systems planned are appropriate for that operation and will work properly. (ii) Basis of Initial Exposure Assessment: The initial exposure assessment shall be based on data derived from the following sources: (A) If feasible, the employer shall monitor employees and base the exposure assessment on the results of exposure monitoring which is conducted pursuant to the criteria in paragraph (f)(2)(iii) of this section. (B) In addition, the assessment shall include consideration of all observations, information or calculations which indicate employee exposure to asbestos, including any previous monitoring conducted in the workplace, or of the operations of the employer which indicate the levels of airborne asbestos likely to be encountered on the job. However, the assessment may conclude that exposures are likely to be consistently below the PELs only as a conclusion of a "negative exposure assessment" conducted pursuant to paragraph (f)(2)(iii) of this section. (C) For Class I asbestos work, until the employer conducts exposure monitoring and documents that employees on that job will not be exposed in excess of the PELs, or otherwise makes a negative exposure assessment pursuant to paragraph (f)(2)(iii) of this section, the employer shall presume that employees are exposed in excess of the TWA and excursion limit. (iii) Negative Initial Exposure Assessment: For any one specific asbestos job which will be performed by employees who have been trained in compliance with the standard, the employer may demonstrate that employee exposures will be below the PELs by data which conform to the following criteria; (A) Objective data demonstrating that the product or material containing asbestos minerals or the activity involving such product or material cannot release airborne fibers in concentrations exceeding the TWA and excursion limit under those work conditions having the greatest potential for releasing asbestos; or (B) Where the employer has monitored prior asbestos jobs for the PEL and the excursion limit within 12 months of the current or projected job, the monitoring and analysis were performed in compliance with the asbestos standard in effect; and the data were obtained during work operations conducted under workplace conditions "closely resembling" the processes, type of material, control methods, work practices, and environmental conditions used and prevailing in the employer's current operations, the operations were conducted by employees whose training and experience are no more extensive than that of employees performing the current job, and these data show that under the conditions prevailing and which will prevail in the current workplace there is a high degree of certainty that employee exposures will not exceed the TWA and excursion (C) The results of initial exposure monitoring of the current job made from breathing zone air samples that are representative of the 8-hour TWA and 30-minute short-term exposures of each employee covering operations which are most likely during the performance of the entire asbestos job to result in exposures over the PELs. (3) Periodic monitoring. (i) Class I and II operations. The employer shall conduct daily monitoring that is representative of the exposure of each employee who is assigned to work within a regulated area who is performing Class I or II work, unless the employer pursuant to paragraph (f)(2)(iii) of this section, has made a negative exposure assessment for the entire operation. (ii) All operations under the standard other than Class I and II operations. The employer shall conduct periodic monitoring of all work where exposures are expected to exceed a PEL, at intervals sufficient to document the validity of the exposure prediction. (iii) Exception: When all employees required to be monitored daily are equipped with supplied-air respirators operated in the positive-pressure mode, the employer may dispense with the daily monitoring required by this paragraph. However, employees performing Class I work using a control method which is not listed in paragraph (g)(4) (i), (ii), or (iii) of this section or using a modification of a listed control method, shall continue to be monitored daily even if they are equipped with supplied-air respirators. (4)(i) Termination of monitoring. If the periodic monitoring required by paragraph (f)(3) of this section reveals that employee exposures, as indicated by statistically reliable measurement, are below the permissible exposure limit and excursion limit the employer may discontinue monitoring for those employees whose exposures are represented by such monitoring. (ii) Additional monitoring. Notwithstanding the provisions of paragraph (f) (2) and (3), and (f)(4) of this section, the employer shall institute the exposure monitoring required under paragraph (f)(3) of this section whenever there has been a change in process, control equipment, personnel or work practices that may result in new
or additional exposures above the permissible exposure limit and/or excursion limit or when the employer has any reason to suspect that a change may result in new or additional exposures above the permissible exposure limit and/or excursion limit. Such additional monitoring is required regardless of whether a "negative exposure assessment" was previously produced for a specific job. (5) Observation of monitoring. (i) The employer shall provide affected employees and their designated representatives an opportunity to observe any monitoring of employee exposure to asbestos conducted in accordance with this section. (ii) When observation of the monitoring of employee exposure to asbestos requires entry into an area where the use of protective clothing or equipment is required, the observer shall be provided with and be required to use such clothing and equipment and shall comply with all other applicable safety and health procedures. (g) Methods of compliance—(1) Engineering controls and work practices for all operations covered by this section. The employer shall use the following engineering controls and work practices in all operations covered by this section, regardless of the levels of exposure: (i) Vacuum cleaners equipped with HEPA filters to collect all debris and dust containing ACM or PACM; and, (ii) Wet methods, or wetting agents, to control employee exposures during asbestos handling, mixing, removal, cutting, application, and cleanup, except where employers demonstrate that the use of wet methods is infeasible due to for example, the creation of electrical hazards, equipment malfunction, and, in roofing, slipping hazards; and (iii) Prompt clean-up and disposal of wastes and debris contaminated with asbestos in leak-tight containers (2) In addition to the requirements of paragraph (g)(1) of this section above, the employer shall-use the following control methods to achieve compliance with the TWA permissible exposure limit and excursion limit prescribed by paragraph (c) of this section; (i) Local exhaust ventilation equipped with HEPA filter dust collection systems; (ii) Enclosure or isolation of processes producing asbestos dust; (iii) Ventilation of the regulated area to move contaminated air away from the breathing zone of employees and toward a filtration or collection device equipped with a HEPA filter; (iv) Use of other work practices and engineering controls that the Assistant Secretary can show to be feasible. (v) Wherever the feasible engineering and work practice controls described above are not sufficient to reduce employee exposure to or below the permissible exposure limit and/or excursion limit prescribed in paragraph (c) of this section, the employer shall use them to reduce employee exposure to the lowest levels attainable by these controls and shall supplement them by the use of respiratory protection that complies with the requirements of paragraph (h) of this section. (3) Prohibitions. The following work practices and engineering controls shall not be used for work related to asbestos or for work which disturbs ACM or PACM, regardless of measured levels of asbestos exposure or the results of initial exposure assessments: (i) High-speed abrasive disc saws that are not equipped with point of cut ventilator or enclosures with HEPA filtered exhaust air. (ii) Compressed air used to remove asbestos, or materials containing asbestos, unless the compressed air is used in conjunction with an enclosed ventilation system designed to capture the dust cloud created by the (iii) Dry sweeping, shoveling or other dry clean-up of dust and debris containing ACM and PACM. (iv) Employee rotation as a means of reducing employee exposure to asbestos. (4) Class I Requirements. In addition to the provisions of paragraphs (g) (1) and (2) of this section, the following engineering controls and work practices and procedures shall be used. (i) All Class I work, including the installation and operation of the control system shall be supervised by a qualified person as defined in paragraph (b) of this section; (ii) For all Class I jobs involving the removal of more than 25 linear or 10 square feet of TSI or surfacing ACM or PACM; for all other Class I jobs, where the employer cannot produce a negative exposure assessment pursuant to paragraph (f)(2)(iii) of this section, or where employees are working in areas adjacent to the regulated area, while the Class I work is being performed, the employer shall use one of the following methods to ensure that airborne asbestos does not migrate from the regulated (A) Critical barriers shall be placed over all openings to the regulated area: (B) The employer shall use another barrier or isolation method which prevents the migration of airborne asbestos from the regulated area, as verified by perimeter area surveillance during each work shift at each boundary of the regulated area, showing no visible asbestos dust; and perimeter area monitoring showing that clearance levels contained in 40 CFR Part 763, Subpart E of the EPA Asbestos in Schools Rule are met, or that perimeter area levels, measured by (PCM) are no more than background levels representing the same area before the asbestos work began. The results of such monitoring shall be made known to the employer no later than 24 hours from the end of the work shift represented by such monitoring. (iii) For all Class I jobs, HVAC systems shall be isolated in the regulated area by sealing with a double layer of 6 mil plastic or the equivalent; (iv) For all Class I jobs, impermeable dropcloths shall be placed on surfaces beneath all removal activity; (v) For all Class I jobs, all objects within the regulated area shall be covered with impermeable dropcloths or plastic sheeting which is secured by duct tape or an equivalent. (vi) For all Class I jobs where the employer cannot produce a negative exposure assessment or where exposure monitoring shows the PELs are exceeded, the employer shall ventilate the regulated area to move contaminated air away from the breathing zone of employees toward a HEPA filtration or collection device. (5) Specific Control Systems for Class I Work. In addition, Class I asbestos work shall be performed using one or more of the following control methods pursuant to the limitations stated below: (i) Negative Pressure Enclosure (NPE) systems: NPE systems shall be used where the configuration of the work area does not make the erection of the enclosure infeasible, with the following specifications and work practices. (A) Specifications: (1) The negative pressure enclosure (NPE) may be of any configuration. (2) At least 4 air changes per hour shall be maintained in the NPE, (3) A minimum of -0.02 column inches of water pressure differential, relative to outside pressure, shall be maintained within the NPE as evidenced by manometric measurements, (4) The NPE shall be kept under negative pressure throughout the period of its use, and - (5) Air movement shall be directed away from employees performing asbestos work within the enclosure, and toward a HEPA filtration or a collection device. - (B) Work Practices: (1) Before beginning work within the enclosure and at the beginning of each shift, the NPE shall inspected for breaches and smoke-tested for leaks, and any leaks sealed. (2) Electrical circuits in the enclosure shall be deactivated, unless equipped with ground-fault circuit interrupters. (ii) Glove bag systems, shall be used to remove PACM and/or ACM from straight runs of piping with the following specifications and work practices. (A) Specifications: (1) Glovebags shall be made of 6 mil thick plastic and shall be seamless at the bottom. (2) [Reserved] (B) Work Practices: (1) Each glovebag shall be installed so that it completely covers the circumference of pipe or other structure where the work is to be done. (2) Glovebags shall be smoke-tested for leaks and any leaks sealed prior to use. (3) Glovebags may be used only once and may not be moved. (4) Glovebags shall not be used on surfaces whose temperature exceeds 150°. (5) Prior to disposal, glovebags shall be collapsed by removing air within them using a HEPA vacuum. (6) Before beginning the operation, loose and friable material adjacent to the glovebag/box operation shall be wrapped and sealed in two layers of six mil plastic or otherwise rendered intact. (7) Where system uses attached waste bag, such bag shall be connected to collection bag using hose or other material which shall withstand pressure of ACM waste and water without losing its integrity: (8) Sliding valve or other device shall separate waste bag from hose to ensure no exposure when waste bag is disconnected: (9) At least two persons shall perform Class I glovebag removals. (iii) Negative Pressure Glove Bag Systems. Negative pressure glove bag systems shall be used to remove ACM or PACM from piping. (A) Specifications: In addition to specifications for glove bags systems above, negative pressure glove bag systems shall attach HEPA vacuum system or other device to bag to prevent collapse during removal. (B) Work Practices: (1) The employer shall comply with the work practices for glove bag systems in paragraph (g)(5)(ii)(B)(2) of this section, (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run continually during the operation. (3) Where a separate waste bag is used along with a collection bag and discarded after one use, the collection bag may be reused if rinsed clean with amended water before reuse. (iv) Negative Pressure Glove Box systems: Negative pressure glove boxes shall be used to remove ACM or PACM from pipe runs with the following specifications and work practices. (A) Specifications: - (1) Glove boxes shall be constructed with rigid sides and made from metal or other material which can withstand the weight of the ACM and PACM and water used during removal: - (2) A negative pressure generator shall be used to create negative
pressure in system: - (3) An air filtration unit shall be attached to the box: - (4) The box shall be fitted with gloved apertures: - (5) An aperture at the base of the box shall serve as a bagging outlet for waste ACM and water: - (6) A back-up generator shall be present on site: - (7) Waste bags shall consist of 6 mil thick plastic double-bagged before they are filled or plastic thicker than 6 mil. (B) Work practices: - (1) At least two persons shall perform the removal: - (2) The box shall be smoke tested prior to each use: - (3) Loose or damaged ACM adjacent to the box shall be wrapped and sealed in two layers of 6 mil plastic prior to the job, or otherwise made intact prior to the job. (4) A HEPA filtration system shall be used to maintain pressure barrier in box. (v) Water Spray Process System: A water spray process system may be used for removal of ACM and PACM from cold line piping if, employees carrying out such process have completed a 40-hour separate training course in its use, in addition to training required for employees performing Class I work. The system shall meet the following specifications and shall be performed by employees using the following work practices. (A) Specifications: (1) Piping from which insulation will be removed shall be surrounded on 3 sides by rigid framing, (2) A 360 degree water spray, delivered through nozzles supplied by a high pressure separate water line, shall be formed around the piping. (3) The spray shall collide to form a fine aerosol which provides a liquid barrier between workers and the ACM and PACM. (B) Work Practices: (1) The system shall be run for at least 10 minutes before removal begins. (2) All removal shall take place within the barrier. (3) The system shall be operated by at least three persons, one of whom shall not perform removal but shall check equipment, and ensure proper operation of the system. (4) After removal, the ACM and PACM shall be bagged while still inside the water barrier. - (vi) A small walk-in enclosure which accommodates no more than two persons (mini-enclosure) may be used if the disturbance or removal can be completely contained by the enclosure, with the following specifications and work practices. - (A) Specifications: (1) The fabricated or job-made enclosure shall be constructed of 6 mil plastic or equivalent: (2) The enclosure shall be placed under negative pressure by means of a HEPA filtered vacuum or similar ventilation unit: (C) Work practices: (1) Before use, the minienclosure shall be inspected for leaks and smoke tested to detect breaches, and breaches sealed. (2) Before reuse, the interior shall be completely washed with amended water and HEPA-vacuumed. (3) During use air movement shall be directed away from the employee's breathing zone within the minienclosure. (6) Alternative control methods for Class I work. Class I work may be performed using a control method which is not referenced in paragraph (g)(5) of this section, or which modifies a control method referenced in paragraph (g)(5) of this section, if the following provisions are complied with: (i) The control method shall enclose, contain or isolate the processes or source of airborne asbestos dust, or otherwise capture or redirect such dust before it enters the breathing zone of employees. - (ii) A certified industrial hygienist or licensed professional engineer who is also qualified as a project designer as defined in paragraph (b) of this section, shall evaluate the work area, the projected work practices and the engineering controls and shall certify in writing that: the planned control method is adequate to reduce direct and indirect employee exposure to below the PELs under worst-case conditions of use, and that the planned control method will prevent asbestos contamination outside the regulated area, as measured by clearance sampling which meets the requirements of EPA's Asbestos in Schools Rule issued under AHERA, or perimeter monitoring which meets the criteria in paragraph (g)(4)(i)(B)(2) of this section. - (A) Where the TSI or surfacing material to be removed is 25 linear or 10 square feet or less, the evaluation required in paragraph (g)(6) of this section may be performed by a "qualified person", and may omit consideration of perimeter or clearance monitoring otherwise required. - (B) The evaluation of employee exposure required in paragraph (g)(6) of this section, shall include and be based on sampling and analytical data representing employee exposure during the use of such method under worst-case conditions and by employees whose training and experience are equivalent to employees who are to perform the current job. - (iii) Before work which involves the removal of more than 25 linear or 10 square feet of TSI or surfacing ACM/PACM is begun using an alternative method which has been the subject of a paragraph (g)(6) required evaluation and certification, the employer shall send a copy of such evaluation and certification to the national office of OSHA, Office of Technical Supportm, Room N3653, 200 Constitution Avenue, NW, Washington, DC 20210. - (7) Work Practices and Engineering Controls for Class II work. - (i) All Class II work, shall be supervised by a qualified person as defined in paragraph (b) of this section. - (ii) For all indoor Class II jobs, where the employer has not produced a negative exposure assessment pursuant to paragraph (f)(4)(iii) of this section, or where during the job changed conditions indicate there may be exposure above the PEL or where the employer does not remove the ACM in a substantially intact state, the employer shall use one of the following methods to ensure that airborne asbestos does not migrate from the regulated area; - (A) Critical barriers shall be placed over all openings to the regulated area; or. - (B) The employer shall use another barrier or isolation method which prevents the migration of airborne asbestos from the regulated area, as verified by perimeter area monitoring or clearance monitoring which meets the criteria set out in paragraph (g)(4)(i)(B)(2) of this section. (iii) Impermeable dropcloths shall be placed on surfaces beneath all removal activity. (iv) All Class II asbestos work shall be performed using the work practices and requirements set out above in paragraph (g)(3) (i) through (v) of this section. - (8) Additional Controls for Class II work. Class II asbestos work shall also be performed by complying with the work practices and controls designated for each type of asbestos work to be performed, set out in this paragraph. Where more than one control method may be used for a type of asbestos work, the employer may choose one or a combination of designated control methods. Class II work also may be performed using a method allowed for Class I work, except that glove bags and glove boxes are allowed if they fully enclose the Class II material to be removed. - (i) For removing vinyl and asphalt flooring/deck materials which contain ACM or for which in buildings constructed not later than 1980, the employer has not verified the absence of ACM pursuant to paragraph (g)(8)(i)(1): the employer shall ensure that employees comply with the following work practices and that employees are trained in these practices pursuant to paragraph (k)(8) of this section: (A) Flooring/deck materials or its backing shall not be sanded. (B) Vacuums equipped with HEPA filter, disposable dust bag, and metal floor tool (no brush) shall be used to clean floors. (C) Resilient sheeting shall be removed by cutting with wetting of the snip point and wetting during delamination. Rip-up of resilient sheet floor material is prohibited. (D) All scraping of residual adhesive and/or backing shall be performed using wet methods. (E) Dry sweeping is prohibited. (F) Mechanical chipping is prohibited unless performed in a negative pressure enclosure which meets the requirements of paragraph (g)(5)(iv) of this section. (G) Tiles shall be removed intact, unless the employer demonstrates that intact removal is not possible. (H) When tiles are heated and can be removed intact, wetting may be omitted. (I) Resilient flooring/deck material in buildings/vessels constructed no later than 1980, including associated mastic and backing shall be assumed to be asbestos-containing unless an industrial hygienist determines that it is asbestosfree using recognized analytical techniques. (ii) For removing roofing material which contains ACM the employer shall ensure that the following work practices are followed: (A) Roofing material shall be removed in an intact state to the extent feasible. (B) Wet methods shall be used where feasible. (C) Cutting machines shall be continuously misted during use, unless a competent person determines that misting substantially decreases worker safety. (D) All loose dust left by the sawing operation must be HEPA vacuumed immediately. (E) Unwrapped or unbagged roofing material shall be immediately lowered to the ground via covered, dust-tight chute, crane or hoist, or placed in an impermeable waste bag or wrapped in plastic sheeting and lowered to ground no later than the end of the work shift. (F) Upon being lowered, unwrapped material shall be transferred to a closed receptacle in such manner so as to preclude the dispersion of dust. (G) Roof level heating and ventilation air intake sources shall be isolated or the ventilation system shall be shut down. (iii) When removing cementitious asbestos-containing siding, shingles (CACS), or transite panels containing ACM, the employer shall ensure that the following work practices are followed: (A) Cutting, abrading or breaking siding, shingles, or transite panels shall be prohibited unless the employer can demonstrate that methods less likely to result in asbestos fiber release cannot be used. (B) Each panel or shingle shall be sprayed with amended water prior to removal. - (C) Unwrapped or unbagged panels or shingles shall be immediately lowered to the ground
via covered dust-tight chute, crane or hoist, or placed in an impervious waste bag or wrapped in plastic sheeting and lowered to the ground no later than the end of the work shift. - (D) Nails shall be cut with flat, sharp instruments. - (iv) When removing gaskets containing ACM, the employer shall ensure that the following work practices are followed: - (A) If a gasket is visibly deteriorated and unlikely to be removed intact, removal shall be undertaken within a glovebag as described in paragraph (g)(5)(ii) of this section. (B) The gasket shall be thoroughly wetted with amended water prior to its removal. (C) The wet gasket shall be immediately placed in a disposal container. (D) Any scraping to remove residue must be performed wet. (v) When performing any other Class II removal of asbestos containing material for which specific controls have not been listed in paragraph (g)(8)(iv) (A) through (D) of this section, the employer shall ensure that the following work practices are complied with. (A) The material shall be thoroughly wetted with amended water prior and during its removal. (B) The material shall be removed in an intact state unless the employer demonstrates that intact removal is not possible. (C) Cutting, abrading or breaking the material shall be prohibited unless the employer can demonstrate that methods less likely to result in asbestos fiber release are not feasible. (D) Asbestos-containing material removed, shall be immediately bagged or wrapped, or kept wetted until transferred to a closed receptacle, no later than the end of the work shift. (vi) Alternative Work Practices and Controls. Instead of the work practices and controls listed in paragraphs (g)(8) (i) through (v) of this section, the employer may use different or modified engineering and work practice controls if the following provisions are complied with. (A) The employer shall demonstrate by data representing employee exposure during the use of such method under conditions which closely resemble the conditions under which the method is to be used, that employee exposure will not exceed the PELs under any anticipated circumstances. (B) A qualified person shall evaluate the work area, the projected work practices and the engineering controls. and shall certify in writing, that the different or modified controls are adequate to reduce direct and indirect employee exposure to below the PELs under all expected conditions of use and that the method meets the requirements of this standard. The evaluation shall include and be based on data representing employee exposure during the use of such method under conditions which closely resemble the conditions under which the method is to be used for the current job, and by employees whose training and experience are equivalent to employees who are to perform the current job. (9) Work Practices and Engineering Controls for Class III asbestos work. Class III asbestos work shall be conducted using engineering and work practice controls which minimize the exposure to employees performing the asbestos work and to bystander employees. (i) The work shall be performed using wet methods. (ii) To the extent feasible, the work shall be performed using local exhaust ventilation. (iii) Where the disturbance involves drilling, cutting, abrading, sanding, chipping, breaking, or sawing of thermal system insulation or surfacing material, the employer shall use impermeable dropcloths and shall isolate the operation using mini-enclosures or glove bag systems pursuant to paragraph (g)(5) of this section. (iv) Where the employer does not demonstrate by a negative exposure assessment performed in compliance with paragraph (f)(4)(iii) of this section that the PELs will not be exceeded, or where monitoring results show exceedances of a PEL, the employer shall contain the area using impermeable dropcloths and plastic barriers or their equivalent, or shall isolate the operation using minienclosure or glove bag systems pursuant to paragraph (g)(5) of this section. (v) Employees performing Class III jobs which involve the disturbance of TSI or surfacing ACM or PACM or where the employer does not demonstrate by a "negative exposure assessment" in compliance with paragraph (e)(4)(iii) of this section that the PELs will not be exceeded or where monitoring results show exceedances of the PEL, shall wear respirators which are selected, used and fitted pursuant to provisions of paragraph (h) of this section. (10) Class IV asbestos work. Class IV asbestos jobs shall be conducted by employees trained pursuant to the asbestos awareness training program set out in paragraph (k)(8) of this section. In addition, all Class IV jobs shall be conducted in conformity with the requirements set out in paragraph (g)(1) of this section, mandating wet methods, HEPA vacuums, and prompt clean up of debris containing ACM or PACM. (i) Employees cleaning up debris and waste in a regulated area where respirators are required shall wear respirators which are selected, used and fitted pursuant to provisions of paragraph (h) of this section. (ii) Employers of employees cleaning up waste and debris in an area where friable TSI or surfacing ACM/PACM is accessible, shall assume that such waste and debris contain asbestos. (11) Specific compliance methods for brake and clutch repair: (i) Engineering controls and work practices for brake and clutch repair and service. During automotive brake and clutch inspection. disassembly, repair and assembly operations, the employer shall institute engineering controls and work practices to reduce employee exposure to materials containing asbestos using a negative pressure enclosure/HEPA vacuum system method or low pressure/ wet cleaning method, which meets the detailed requirements set out in Appendix L to this section. The employer may also comply using an equivalent method which follows written procedures which the employer demonstrates can achieve results equivalent to Method A. For facilities in which no more than 5 pair of brakes or 5 clutches are inspected, disassembled. repaired, or assembled per week, the method set for in paragraph [D] of Appendix L to this section may be used. (ii) The employer may also comply by using an equivalent method which follows written procedures, which the employer demonstrates can achieve equivalent exposure reductions as do the two "preferred methods." Such demonstration must include monitoring data conducted under workplace conditions closely resembling the process, type of asbestos containing materials, control method, work practices and environmental conditions which the equivalent method will be used, or objective data, which document that under all reasonably foreseeable conditions of brake and clutch repair applications, the method results in exposures which are equivalent to the methods set out in Appendix L. (h) Respiratory protection (1) General. The employer shall provide respirators. and ensure that they are used, where required by this section. Respirators shall be used in the following circumstances: (i) During all Class I asbestos jobs.(ii) During all Class II work where the ACM is not removed in a substantially intact state. (iii) During all Class II and III work which is not performed using wet methods. - (iv) During all Class II and III asbestos jobs where the employer does not produce a "negative exposure assessment". - (v) During all Class III jobs where TSI or surfacing ACM or PACM is being disturbed. - (vi) During all Class IV work performed within regulated areas where employees performing other work are required to wear respirators. (vii) During all work covered by this section where employees are exposed above the TWA or excursion limit. (viii) In emergencies. (2) Respirator selection. (i) Where respirators are used, the employer shall select and provide, at no cost to the employee, the appropriate respirator as specified in Table 1, and shall ensure that the employee uses the respirator provided. (ii) The employer shall select respirators from among those jointly approved as being acceptable for protection by the Mine Safety and Health Administration (MSHA) and the National Institute for Occupational Safety and Health (NIOSH) under the provisions of 30 CFR Part 11. (iii) The employer shall provide a tight fitting powered, air-purifying respirator in lieu of any negativepressure respirator specified in Table 1 (A) An employee performing Class I, II or III work chooses to use this type of respirator; and (B) This respirator will provide adequate protection to the employee. # TABLE 1.—RESPIRATORY PROTECTION FOR ASBESTOS FIBERS | Airborne concentration of asbestos or conditions of use | Required respirator | | |---|---|--| | Not in excess of 1 f/cc (10) X PEL), or otherwise as required independent of exposure pursuant to (h)(2)(iv). | Half-mask air purifying respirator other than a disposable respirator, equipped with high efficiency filters. | | | Not in excess of 5 f/cc (50 X PEL) | Full facepiece air-purifying respirator equipped with high efficiency filters. | | | Not in excess of 10 f/cc (100 X PEL) | Any powered air-purifying respirator equipped with high efficiency filters or any supplied air respirator operated in continuous flow mode. | | | Not in excess of 100 f/cc (1,000 X PEL) | Full facepiece supplied air respirator operated in pressure demand mode. | | | Greater than 100 f/cc (1,000 X PEL) or unknown concentration. | Full facepiece supplied air respirator operated in pressure demand mode, equipped with an auxiliary positive pressure self-contained breathing apparatus. | | Note: a. Respirators assigned for high environmental concentrations may be used at lower concentrations, or when
required respirator use is independent of concentration. b. A high efficiency filter means a filter that is at least 99.97 percent efficient against mono-dispersed particles of 0.3 micrometers in diameter or larger. (iv) In addition to the above selection criterion, the employer shall provide a half-mask air purifying respirator, other than a disposable respirator, equipped with high efficiency filters whenever the employee performs the following activities: Class II and III asbestos jobs where the employer does not produce a negative exposure assessment; and Class III jobs where TSI or surfacing ACM or PACM is being disturbed. (v) In addition to the above selection criteria, the employer shall provide a full facepiece supplied air respirator operated in the pressure demand mode equipped with an auxiliar76y positive pressure self-contained breathing apparatus for all employees within the regulated area where Class I work is being performed for which a negative exposure assessment has not been produced. (3) Respirator program. (i) Where respiratory protection is used, the employer shall institute a respirator program in accordance with 29 CFR 1910.134(b), (d), (e), and (f). (ii) The employer shall permit each employee who uses a filter respirator to change the filter elements whenever an increase in breathing resistance is detected and shall maintain an adequate supply of filter elements for this purpose. (iii) Employees who wear respirators shall be permitted to leave work areas to wash their faces and respirator facepieces whenever necessary to prevent skin irritation associated with respirator use. (iv) No employee shall be assigned to tasks requiring the use of respirators if, based on his or her most recent examination, an examining physician determines that the employee will be unable to function normally wearing a respirator, or that the safety or health of the employee or of other employees will be impaired by the use of a respirator. Such employee shall be assigned to another job or given the opportunity to transfer to a different position the duties of which he or she is able to perform with the same employer, in the same geographical area, and with the same seniority, status, and rate of pay and other job benefits he or she had just prior to such transfer, if such a different position is available. (4) Respirator fit testing. (i) The employer shall ensure that the respirator issued to the employee exhibits the least possible facepiece leakage and that the respirator is fitted properly. (ii) Employers shall perform either quantitative or qualitative face fit tests at the time of initial fitting and at least every 6 months thereafter for each employee wearing a negative-pressure respirator. The qualitative fit tests may be used only for testing the fit of halfmask respirators where they are permitted to be worn, or of fullfacepiece air purifying respirators where they are worn at levels at which halffacepiece air purifying respirators are permitted. Qualitative and quantitative fit tests shall be conducted in accordance with Appendix C of this section. The tests shall be used to select facepieces that provide the required protection as prescribed in Table 1, in paragraph (h)(2)(iii) of this section. (i) Protective clothing (1) General. The employer shall provide and require the use of protective clothing, such as coveralls or similar whole-body clothing, head coverings, gloves, and foot coverings for any employee exposed to airborne concentrations of asbestos that exceed the TWA and/or excursion limit prescribed in paragraph (c) of this section, or for which a required negative exposure assessment is not produced, and for any employee performing Class I operations which involve the removal of over 25 linear or 10 square feet of TSI or surfacing ACM or PÄCM. (2) Laundering. (i) The employer shall ensure that laundering of contaminated clothing is done so as to prevent the release of airborne asbestos in excess of the TWA or excursion limit prescribed in paragraph (c) of this section. (ii) Any employer who gives contaminated clothing to another person for laundering shall inform such person of the requirement in paragraph (i)(2)(i) of this section to effectively prevent the release of airborne asbestos in excess of the TWA excursion limit prescribed in paragraph (c) of this section. (3) Contaminated clothing Contaminated clothing shall be transported in sealed impermeable bags. or other closed, impermeable containers, and be labeled in accordance with paragraph (k) of this section. (4) Inspection of protective clothing. (i) The qualified person shall examine worksuits worn by employees at least once per workshift for rips or tears that may occur during performance of work. (ii) When rips or tears are detected while an employee is working, rips and tears shall be immediately mended, or the worksuit shall be immediately replaced. (j) Hygiene facilities and practices for employees. (1) Requirements for employees performing Class I asbestos jobs. (i) Decontamination areas: For all Class I jobs involving over 25 linear or 10 square feet of TSI or surfacing ACM or PACM, the employer shall establish a decontamination area that is adjacent and connected to the regulated area for the decontamination of such employees. The decontamination area shall consist of an equipment room, shower area, and clean room in series. The employer shall ensure that employees enter and exit the regulated area through the decontamination area. (A) Equipment room. The equipment room shall be supplied with impermeable, labeled bags and containers for the containment and disposal of contaminated protective equipment. (B) Shower area. Shower facilities shall be provided which comply with 29 CFR 1910.141(d)(3), unless the employer can demonstrate that they are not feasible. The showers shall be adjacent both to the equipment room and the clean room, unless the employer can demonstrate that this location is not feasible. Where the employer can demonstrate that it is not feasible to locate the shower between the equipment room and the clean room, or where the work is performed outdoors, or when the work involving asbestos exposure takes place on board a ship, the employers shall ensure that employees: . (1) Remove asbestos contamination from their worksuits in the equipment room using a HEPA vacuum before proceeding to a shower that is not adjacent to the work area; or (2) Remove their contaminated worksuits in the equipment room, then don clean worksuits, and proceed to a shower that is not adjacent to the work area. (C) Clean change room. The clean room shall be equipped with a locker or appropriate storage container for each employee's use. When the employer can demonstrate that it is not feasible to provide a clean change area adjacent to the work area, or where the work is performed outdoors, or when the work takes place aboard a ship, the employer may permit employees engaged in Class I asbestos jobs to clean their protective clothing with a portable HEPA-equipped vacuum before such employees leave the regulated area. Such employees however must then change into street clothing in clean change areas provided by the employer which otherwise meet the requirements of this section. (ii) Decontamination area entry procedures. The employer shall ensure that employees: (A) Enter the decontamination area through the clean room; (B) Remove and deposit street clothing within a locker provided for their use; and (C) Put on protective clothing and respiratory protection before leaving the clean room. (D) Before entering the regulated area, the employer shall ensure that employees pass through the equipment room. (iii) Decontamination area exit procedures. The employer shall ensure that (A) Before leaving the regulated area, employees shall remove all gross contamination and debris from their protective clothing. protective clothing. (B) Employees shall remove their protective clothing in the equipment room and deposit the clothing in labeled impermeable bags or containers. (C) Employees shall not remove their respirators in the equipment room. (D) Employees shall shower prior to entering the clean room. (E) After showering, employees shall enter the clean room before changing into street clothes. (iv) Lunch Areas. Whenever food or beverages are consumed at the worksite where employees are performing Class I asbestos work, the employer shall provide lunch areas in which the airborne concentrations of asbestos are below the permissible exposure limit and/or excursion limit. (2) Requirements for Class I work involving less than 25 linear or 10 square feet of TSI or surfacing and PACM, and for Class II and Class III asbestos work operations where exposures exceed a PEL or where there is no negative exposure assessment produced before the operation. (i) The employer shall establish an equipment room or area that is adjacent to the regulated area for the decontamination of employees and their equipment which is contaminated with asbestos which shall consist of an area covered by a impermeable drop cloth on the floor/deck or horizontal working surface. (ii) The area must be of sufficient size as to accommodate cleaning of equipment and removing personal protective equipment without spreading contamination beyond the area (as determined by visible accumulations). (iii) Workclothing must be cleaned with a HEPA vacuum before it is removed. (iv) All equipment and surfaces of containers filled with ACM must be cleaned prior to removing them from the equipment room or area. (v) The employer shall ensure that employees enter and exit the regulated area through the equipment room or area. - (3) Requirements for Class IV work. Employers shall ensure that employees performing Class IV work within a regulated area comply with the hygiene practice required of employees performing work which has a higher classification within that regulated area. Otherwise
employers of employees cleaning up debris and material which is TSI or surfacing ACM or identified as PACM shall provide decontamination facilities for such employees which are required by paragraph (j)(2) of this section. - (4) Smoking in work areas. The employer shall ensure that employees do not smoke in work areas where they are occupationally exposed to asbestos because of activities in that work area. - (k) Communication of hazards. Note: This section applies to the communication of information concerning asbestos hazards in shipyard employment activities to facilitate compliance with this standard. Most asbestos-related shipyard activities involve previously installed building materials. Building/vessel owners often are the only and/or best sources of information concerning them. Therefore, they, along with employers of potentially exposed employees, are assigned specific information conveying and retention duties under this section. Installed Asbestos Containing Building/Vessel Material: Employers and building/vessel owners are required to treat TSI and sprayed or troweled on surfacing materials as asbestos-containing unless the employer, by complying with paragraph (k)(4) of this section determines that the material is not asbestos-containing. Asphalt or vinyl flooring/decking material installed in buildings or vessels no later than 1980 must also be considered as asbestos containing unless the employer/owner, pursuant to paragraph (g), of this section determines it is not asbestos containing. If the employer or building/vessel owner has actual knowledge or should have known, through the exercise of due diligence, that materials other than TSI and sprayed-on or troweled-on surfacing materials are asbestoscontaining, they must be treated as such. When communicating information to employees pursuant to this standard, owners and employers shall identify "PACM" as ACM. Additional requirements relating to communication of asbestos work on multiemployer worksites are set out in paragraph (d) of this standard. Duties of building/vessel and facility owners. (i) Before work subject to this standard is begun, building/ vessel and facility owners shall identify the presence, location and quantity of ACM, and/or PACM at the work site. All thermal system insulation and sprayed on or troweled on surfacing materials in buildings/vessels or substrates constructed no later than 1980 shall be identified as PACM. In addition, resilient flooring/decking material installed no later than 1980 shall also be identified as asbestos-containing. (ii) Building/vessel and/or facility owners shall notify the following persons of the presence, location and quantity of ACM or PACM, at work sites in their buildings/facilities/vessels. Notification either shall be in writing or shall consist of a personal communication between the owner and the person to whom notification must be given or their authorized representatives: (A) Prospective employers applying or bidding for work whose employees reasonably can be expected to work in or adjacent to areas containing such material; - (B) Employees of the owner who will work in or adjacent to areas containing such material: - (C) On multi-employer worksites, all employers of employees who will be performing work within or adjacent to areas containing such materials; (D) Tenants who will occupy areas containing such materials. (2) Duties of employers whose employees perform work subject to this standard in or adjacent to areas containing ACM and PACM. Building/ vessel and facility owners whose employees perform such work shall comply with these provisions to the extent applicable. (i) Before work in areas containing ACM and PACM is begun, employers shall identify the presence, location. and quantity of ACM, and/or PACM therein. (ii) Before work under this standard is performed employers of employees who will perform such work shall inform the following persons of the location and quantity of ACM and/or PACM present at the work site and the precautions to be taken to insure that airborne asbestos is confined to the area. (A) Owners of the building/vessel or facility; (B) Employees who will perform such work and employers of employees who work and/or will be working in adjacent (iii) Within 10 days of the completion of such work, the employer whose employees have performed work subject to this standard, shall inform the building/vessel or facility owner and employers of employees who will be working in the area of the current location and quantity of PACM and/or ACM remaining in the former regulated area and final monitoring results, if any. (3) In addition to the above requirements, all employers who discover ACM and/or PACM on a work site shall convey information concerning the presence, location and quantity of such newly discovered ACM and/or PACM to the owner and to other employers of employees working at the work site, within 24 hours of the discovery. - (4) Criteria to rebut the designation of installed material as PACM. (i) At any time, an employer and/or building/ vessel owner may demonstrate, for purposes of this standard, that PACM does not contain asbestos. Building/ vessel owners and/or employers are not required to communicate information about the presence of building material for which such a demonstration pursuant to the requirements of paragraph (k)(4)(ii) of this section has been made. However, in all such cases, the information, data and analysis supporting the determination that PACM does not contain asbestos, shall be retained pursuant to paragraph (n) of this section. - (ii) An employer or owner may demonstrate that PACM does not contain asbestos by the following: (A) Having a completed inspection conducted pursuant to the requirements of AHERA (40 CFR Part 763, Subpart E) which demonstrates that the material is (B) Performing tests of the material containing PACM which demonstrate that no asbestos is present in the material. Such tests shall include analysis of 3 bulk samples of each homogeneous area of PACM collected in a randomly distributed manner. The tests, evaluation and sample collection shall be conducted by an accredited inspector or by a CIH. Analysis of samples shall be performed by persons or laboratories with proficiency demonstrated by current successful participation in a nationally recognized testing program such as the National Voluntary Laboratory Accreditation Program (NVLAP) of the National Institute for Standards and Technology (NIST) of the Round Robin for bulk samples administered by the American Industrial Hygiene Association (AIHA), or an equivalent nationally-recognized round robin testing program.. (5) At the entrance to mechanical rooms/areas in which employees reasonably can be expected to enter and which contain TSI or surfacing ACM and PACM, the building/vessel owner shall post signs which identify the material which is present, its location, and appropriate work practices which, if followed, will ensure that ACM and/ or PACM will not be disturbed (6) Signs. (i) Warning signs that demarcate the regulated area shall be provided and displayed at each location where a regulated area is required to be established by paragraph (e) of this section. Signs shall be posted at such a distance from such a location that an employee may read the signs and take necessary protective steps before entering the area marked by the signs. (ii) The warning signs required by (k)(6) of this section shall bear the following information. DANGER **ASBESTOS** CANCER AND LUNG DISEASE HAZARD AUTHORIZED PERSONNEL ONLY # RESPIRATORS AND PROTECTION CLOTHING ARE REQUIRED IN THIS AREA (7) Labels. (i) Labels shall be affixed to all products containing asbestos and to all containers containing such products, including waste containers. Where feasible, installed asbestos products shall contain a visible label. (ii) Labels shall be printed in large, bold letters on a contrasting background. (iii) Labels shall be used in accordance with the requirements of 29 CFR 1910.1200(f) of OSHA's Hazard Communication standard, and shall contain the following information: DANGER CONTAINS ASBESTOS FIBERS AVOID CREATING DUST CANCER AND LUNG DISEASE HAZARD (iv) [Reserved] (v) Labels shall contain a warning statement against breathing asbestos fibers. (vi) The provisions for labels required by paragraphs (k)(2) (i) through (k)(2) (iii) of this section do not apply where: (A) Asbestos fibers have been modified by a bonding agent, coating. binder, or other material, provided that the manufacturer can demonstrate that, during any reasonably foreseeable use, handling, storage, disposal, processing, or transportation, no airborne concentrations of asbestos fibers in excess of the permissible exposure limit and/or excursion limit will be released, (B) Asbestos is present in a product in concentrations less than 1.0 percent by weight. (vii) When a building/vessel owner/or employer identifies previously installed PACM and/or ACM, labels or signs shall be affixed or posted so that employees will be notified of what materials contain PACM and/or ACM. The employer shall attach such labels in areas where they will clearly be noticed by employees who are likely to be exposed, such as at the entrance to mechanical rooms/areas. Signs required by paragraph (k)(5) of this section may be posted in lieu of labels so long as they contain information required for labelling. (8) Employee information and training. (i) The employer shall, at no cost to the employee,institute a training program for all employees who install asbestos containing products and for all employees who perform Class I through IV asbestos operations, and shall ensure their participation in the program. (ii) Training shall be provided prior to or at the time of initial assignment and at least annually thereafter. (iii) Training for Class I and II operations shall be the equivalent in curriculum, training method and length to the EPA Model
Accreditation Plan (MAP) asbestos abatement worker training (40 CFR Pt. 763, Subpt. E, App. C). For employers whose Class II work with asbestos-containing material involves only the removal and/or disturbance of one generic category of building/vessel material, such as roofing materials, flooring/deck materials, siding materials or transite panels, instead, such employer is required to train employees who perform such work by providing a training course which includes as a minimum all the elements included in paragraph (k)(8)(v) of this section and in addition, the specific work practices and engineering controls set forth in paragraph (g) of this section which specifically relate to that material category. Such course shall include "hands-on" training and shall take at least 8 hours. (iv) Training for Class III employees shall be the equivalent in curriculum and training method to the 16-hour Operations and Maintenance course developed by EPA for maintenance and custodial workers who conduct activities that will result in the disturbance of ACM. [See 40 CFR 763.92(a)(2)]. Such course shall include "hands-on" training in the use of respiratory protection and work practices and shall take at least 16 hours (v) Training for employees performing Class IV operations shall be the equivalent in curriculum and training method to the awareness training course developed by EPA for maintenance and custodial workers who work in buildings containing asbestoscontaining material. (See 40 CFR 763.92 (a)(1)). Such course shall include available information concerning the locations of PACM and ACM, and asbestos-containing flooring material, or flooring material where the absence of asbestos has not been certified; and instruction in recognition of damage, deterioration, and delamination of asbestos containing building materials. Such course shall take at least 2 hours. (vi) The training program shall be conducted in a manner that the employee is able to understand. In addition to the content required by provisions in paragraph (k)(8)(iii) of this section, the employer shall ensure that each such employee is informed of the following: (A) Methods of recognizing asbestos, including the requirement in paragraph (k)(1) of this section to presume that certain building materials contain asbestos.; (B) The health effects associated with asbestos exposure; (C) The relationship between smoking and asbestos in producing lung cancer; - (D) The nature of operations that could result in exposure to asbestos, the importance of necessary protective controls to minimize exposure including, as applicable, engineering controls, work practices, respirators, housekeeping procedures, hygiene facilities, protective clothing, decontamination procedures, emergency procedures, and waste disposal procedures, and any necessary instruction in the use of these controls and procedures; where Class II and IV work will be or is performed, the contents of EPA 20T-2003, "Managing Asbestos In-Place" July 1990 or its equivalent in content; - (E) The purpose, proper use, fitting instructions, and limitations of respirators as required by 29 CFR - (F) The appropriate work practices for performing the asbestos job; (G) Medical surveillance program requirements; and (H) The content of this standard, including appendices. - (I) The names, addresses and phone numbers of public health organizations which provide information, materials and/or conduct programs concerning smoking cessation. The employer may distribute the list of such organizations contained in Appendix J, to comply with this requirement. (J) The requirements for posting signs and affixing labels and the meaning of the required legends for such signs and labels. (9) Access to training materials. (i) The employer shall make readily available to affected employees without cost written materials relating to the employee training program, including a copy of this regulation. (ii) The employer shall provide to the Assistant Secretary and the Director, upon request, all information and training materials relating to the employee information and training program. (iii) The employer shall inform all employees concerning the availability of self-help smoking cessation program material. Upon employee request, the employer shall distribute such material, consisting of NIH Publication No. 89-1647, or equivalent self-help material, which is approved or published by a public health organization listed in Appendix J. Housekeeping—(1) Vacuuming. Where vacuuming methods are selected, HEPA filtered vacuuming equipment must be used. The equipment shall be used and emptied in a manner that minimizes the reentry of asbestos into the workplace. (2) Waste disposal. Asbestos waste, scrap, debris, bags, containers, equipment, and contaminated clothing consigned for disposal shall be collected and disposed of in sealed, labeled, impermeable bags or other closed, labeled, impermeable containers. (3) Care of asbestos-containing flooring/deck material. (i) All vinyl and asphalt flooring/deck material shall be maintained in accordance with this paragraph unless the building/facility owner demonstrates, pursuant to paragraph (g) that the flooring/deck does not contain asbestos. (i) Sanding of flooring/deck material is prohibited. (ii) Stripping of finishes shall be conducted using low abrasion pads at speed lower than 300 rpm and wet - (iii) Burnishing or dry buffing may be performed only on flooring/deck which has sufficient finish so that the pad cannot contact the flooring/deck material. - (4) Dust and debris in an area containing accessible thermal system insulation or surfacing material or visibly deteriorated ACM. (i) shall not be dusted or swept dry, or vacuumed without using a HEPA filter; (ii) shall be promptly cleaned up and disposed in leak tight containers. (m) Medical surveillance—(1) General—(i) Employees covered. The employer shall institute a medical surveillance program for all employees who for a combined total of 30 or more days per year are engaged in Class I, II, and III work or are exposed at or above the permissible exposure limit or excursion limit, and for employees who wear negative pressure respirators pursuant to the requirements of this (ii) Examination by a physician. (A) The employer shall ensure that all medical examinations and procedures are performed by or under the supervision of a licensed physician, and are provided at no cost to the employee and at a reasonable time and place. (B) Persons other than such licensed physicians who administer the pulmonary function testing required by this section shall complete a training course in spirometry sponsored by an appropriate academic or professional institution. (2) Medical examinations and consultations-(i) Frequency. The employer shall make available medical examinations and consultations to each employee covered under paragraph (m)(1)(i) of this section on the following schedules: (A) Prior to assignment of the employee to an area where negativepressure respirators are worn; (B) When the employee is assigned to an area where exposure to asbestos may be at or above the permissible exposure for 30 or more days per year, a medical examination must be given within 10 working days following the thirtieth day (C) And at least annually thereafter. (D) If the examining physician determines that any of the examinations should be provided more frequently than specified, the employer shall provide such examinations to affected employees at the frequencies specified by the physician. (E) Exception: No medical examination is required of any employee if adequate records show that the employee has been examined in accordance with this paragraph within the past 1-year period. (ii) Content. Medical examinations made available pursuant to paragraphs (m)(2)(i) (A) through (m)(2)(i) (C) of this section shall include: (A) A medical and work history with special emphasis directed to the pulmonary, cardiovascular, and gastrointestinal systems. (B) On initial examination, the standardized questionnaire contained in Part 1 of Appendix D to this section and, on annual examination, the abbreviated standardized questionnaire contained in Part 2 of Appendix D to this section. (C) A physical examination directed to the pulmonary and gastrointestinal systems, including a chest ,x-ray to be administered at the discretion of the physician, and pulmonary function tests of forced vital capacity (FVC) and forced expiratory volume at one second (FEV(1)). Interpretation and classification of chest roentgenogram shall be conducted in accordance with Appendix E to this section. (D) Any other examinations or tests deemed necessary by the examining physician. (3) Information provided to the physician. The employer shall provide the following information to the examining physician: (i) A copy of this standard and Appendices D, E, G, and I to this section; (ii) A description of the affected employee's duties as they relate to the employee's exposure; (iii) The employee's representative exposure level or anticipated exposure level; (iv) A description of any personal protective and respiratory equipment used or to be used; and (v) Information from previous medical examinations of the affected employee that is not otherwise available to the examining physician. (4) Physician's written opinion. (i) The employer shall obtain a written opinion from the examining physician. This written opinion shall contain the results of the medical examination and shall include: (A) The physician's opinion as to whether the employee has any detected medical conditions that would place the employee at an increased risk of. material health impairment from exposure to asbestos; (B) Any recommended limitations on the employee or on the use of personal protective equipment such as respirators; and (C) A statement that the employee has been informed by the physician of the results of the medical examination and of any
medical conditions that may result from asbestos exposure. (D) A statement that the employee has been informed by the physician of the increased risk of lung cancer attributable to the combined effect of smoking and asbestos exposure. (ii) The employer shall instruct the physician not to reveal in the written opinion given to the employer specific findings or diagnoses unrelated to occupational exposure to asbestos. (iii) The employer shall provide a copy of the physician's written opinion to the affected employee within 30 days from its receipt. (n) Recordkeeping—(1) Objective data relied on pursuant to paragraph (f) of this section. (i) Where the employer has relied on objective data that demonstrate that products made from or containing asbestos are not capable of releasing fibers of asbestos in concentrations at or above the permissible exposure limit and/or excursion limit under the expected conditions of processing, use, or handling to satisfy the requirements of paragraph (f) of this section, the employer shall establish and maintain an accurate record of objective data reasonably relied upon in support of the exemption. (ii) The record shall include at least the following information: (A) The product qualifying for exemption; (B) The source of the objective data; (C) The testing protocol, results of testing, and/or analysis of the material for the release of asbestos; (D) A description of the operation exempted and how the data support the exemption; and (E) Other data relevant to the operations, materials, processing, or employee exposures covered by the exemption. (iii) The employer shall maintain this record for the duration of the employer's reliance upon such objective data. (2) Exposure measurements. (i) The employer shall keep an accurate record of all measurements taken to monitor employee exposure to asbestos as prescribed in paragraph (f) of this section. Note: The employer may utilize the services of qualified organizations such as industry trade associations and employee associations to maintain the records required by this section. (ii) This record shall include at least the following information: (A) The date of measurement; (B) The operation involving exposure to asbestos that is being monitored; (C) Sampling and analytical methods used and evidence of their accuracy; (D) Number, duration, and results of samples taken; (E) Type of protective devices worn, if any; and (F) Name, social security number, and exposure of the employees whose exposures are represented. (iii) The employer shall maintain this record for at least thirty (30) years, in accordance with 29 CFR 1910.20. (3) Medical surveillance. (i) The employer shall establish and maintain an accurate record for each employee subject to medical surveillance by paragraph (m) of this section, in accordance with 29 CFR 1910.20. (ii) The record shall include at least the following information: (A) The name and social security number of the employee; (B) A copy of the employee's medical examination results, including the medical history, questionnaire responses, results of any tests, and physician's recommendations. (C) Physician's written opinions; (D) Any employee medical complaints related to exposure to asbestos; and (E) A copy of the information provided to the physician as required by paragraph (m) of this section. (iii) The employer shall ensure that this record is maintained for the duration of employment plus thirty (30) years, in accordance with 29 CFR 1910.20. (4) Training records. The employer shall maintain all employee training records for one 1 year beyond the last date of employment by that employer. 5) Data to Rebut PACM: (i) Where the building owner and employer have relied on data to demonstrate that PACM is not asbestoscontaining, such data shall be maintained for as long as they are relied upon to rebut the presumption. (ii) [Reserved] (6) Records of Required Notification. (i) Where the building/vessel owner has communicated and received information concerning the identity, location and quantity of ACM and PACM, written records of such notifications and their content shall be maintained by the owner for the duration of ownership and shall be transferred to successive owners of such buildings/facilities/vessels. (ii) [Reserved] (7) Availability. (i) The employer, upon written request, shall make all records required to be maintained by this section available to the Assistant Secretary and the Director for examination and copying. (ii) The employer, upon request, shall make any exposure records required by paragraphs (f) and (n) of this section available for examination and copying to affected employees, former employees, designated representatives, and the Assistant Secretary, in accordance with 29 CFR 1910.20(a) through (e) and (g) through (i). (iii) The employer, upon request, shall make employee medical records required by paragraphs (m) and (n) of this section available for examination and copying to the subject employee, anyone having the specific written consent of the subject employee, and the Assistant Secretary, in accordance with 29 CFR 1910.20. (8) Transfer of records. (i) The employer shall comply with the requirements concerning transfer of records set forth in 29 CFR 1910.20 (h). (ii) Whenever the employer ceases to do business and there is no successor employer to receive and retain the records for the prescribed period, the employer shall notify the Director at least 90 days prior to disposal and, upon request, transmit them to the Director. (o) Qualified person. (1) General. On all shipyard worksites covered by this standard, the employer shall designate a qualified person, having the qualifications and authorities for ensuring worker safety and health required by Subpart C, General Safety and Health Provisions for Construction (29 CFR 1926.20 through 1926.32). (2) Required Inspections by the Qualified Person. § 1926.20(b)(2) which requires health and safety prevention programs to provide for frequent and regular inspections of the job sites, materials, and equipment to be made by qualified persons, is incorporated. (3) Additional Inspections. In addition, the qualified person shall make frequent and regular inspections of the job sites, in order to perform the duties set out in paragraph (p)(3)(i) and (ii) of this section. For Class I jobs, onsite inspections shall be made at least once during each work shift, and at any time at employee request. For Class II and III jobs, on-site inspections shall be made at intervals sufficient to assess whether conditions have changed, and at any reasonable time at employee request. (i) On all worksites where employees are engaged in Class I or II asbestos work, the qualified person designated in accordance with paragraph (g)(1) of this section shall perform or supervise the following duties, as applicable: (A) Set up the regulated area. enclosure, or other containment; (B) Ensure (by on-site inspection) the integrity of the enclosure or containment; (C) Set up procedures to control entry to and exit from the enclosure and/or (D) Supervise all employee exposure monitoring required by this section and ensure that it is conducted as required by paragraph (f) of this section; (E) Ensure that employees working within the enclosure and/or using glove bags wear protective clothing and respirators as required by paragraphs (h) and (i) of this section; (F) Ensure through on-site supervision, that employees set up and remove engineering controls, use work practices and personal protective equipment in compliance with all requirements; (G) Ensure that employees use the hygiene facilities and observe the decontamination procedures specified in paragraph (j) of this section; (H) Ensure that though on-site inspection engineering controls are functioning properly and employees are using proper work practices; and (I) Ensure that notification requirements in paragraph (f)(6) of this section are met. (4) Training for the competent person; (i) For Class I and II asbestos work the qualified person shall be trained in all aspects of asbestos removal and handling, including: abatement, installation, removal and handling; the contents of this standard; the identification of asbestos; removal procedures, where appropriate; and other practices for reducing the hazard. Such training shall be obtained in a comprehensive course for supervisors, such as a course conducted by an EPA or state-approved training provider, certified by the EPA or a state, or an course equivalent in stringency, content, and length. (ii) For Class III asbestos work operations, the qualified person shall be trained in aspects of asbestos handling appropriate for the nature of the work, to include procedures for setting up glove bags and mini-enclosures, practices for reducing asbestos exposures, use of wet methods, the contents of this standard, and the identification of asbestos. Such training shall be obtained in a comprehensive course for supervisors, such as a course conducted by an EPA or state-approved training provider, certified by the EPA or a state, or an equivalent in stringency, content, and length. (p) Appendices. (1) Appendices A, C, D, and E to this section are incorporated as part of this section and the contents of these appendices are mandatory (2) Appendices B, F, H, I, J, and K to this section are informational and are not intended to create any additional obligations not otherwise imposed or to detract from any existing obligations. (q) Dates. This standard shall become effective October 11, 1994. (2) The provisions of 29 CFR 1926.58 and 29 CFR 1910,1001 remain in effect until the start-up dates of the equivalent provisions of this standard. (3) Start-up dates: All obligations of this standard commence on the effective date except as follows: (i) Methods of compliance. The engineering and work practice controls required by paragraph (g) of this section shall be implemented as soon as possible
but no later than April 10: (ii) Respiratory protection. Respiratory protection required by paragraph (h) of this section shall be provided as soon as possible but no later than February 8, 1995. (iii) Hygiene facilities and practices for employees. Hygiene facilities and practices required by paragraph (j) of this section shall be provided as soon as possible but no later than February 8. (iv) Communication of hazards. Identification, notification, labeling and sign posting, and training required by paragraph (k) of this section shall be provided as soon as possible, but no later than April 10, 1995. (v) Housekeeping. Housekeeping practices and controls required by paragraph (l) of this section shall be provided as soon as possible, but no later than January 9, 1995. (vi) Medical surveillance required by paragraph (m) of this section shall be provided as soon as possible, but no later than January 9, 1995. (vii) The designation and training of competent persons required by paragraph (o) of this section shall completed as soon as possible but no later than April 10, 1995. (Approved by the Office of Management and Budget under control number 1218–0195) # Appendix A to § 1915.1001. OSHA Reference Method.—Mandatory This mandatory appendix specifies the procedure for analyzing air samples for asbestos, tremolite, anthophyllite, and actinolite and specifies quality control procedures that must be implemented by laboratories performing the analysis. The sampling and analytical methods described below represent the elements of the available monitoring methods (such as appendix B to this section, the most current version of the OSHA method ID-60, or the most current version of the NIOSH 7400 method) which OSHA considers to be essential to achieve adequate employee exposure monitoring while allowing employers to use methods that are already established within their organizations. All employers who are required to conduct air monitoring under paragraph (f) of this section are required to utilize analytical laboratories that use this procedure, or an equivalent method, for collecting and analyzing samples. # Sampling and Analytical Procedure - 1. The sampling medium for air samples shall be mixed cellulose ester filter membranes. These shall be designated by the manufacturer as suitable for asbestos, tremolite, anthophyllite, and actinolite counting. See below for rejection of blanks. - 2. The preferred collection device shall be the 25-mm diameter cassette with an open- faced 50-mm extension cowl. The 37-mm cassette may be used if necessary but only if written justification for the need to use the 37-mm filter cassette accompanies the sample results in the employee's exposure monitoring record. Do not reuse or reload cassettes for asbestos sample collection. 3. An air flow rate between 0.5 liter/min and 2.5 liters/min shall be selected for the 25-mm cassette. If the 37-mm cassette is used, an air flow rate between 1 liter/min and 2.5 liters/min shall be selected. - 4. Where possible, a sufficient air volume for each air sample shall be collected to yield between 100 and 1,300 fibers per square millimeter on the membrane filter. If a filter darkens in appearance or if loose dust is seen on the filter, a second sample shall be started. - 5. Ship the samples in a rigid container with sufficient packing material to prevent dislodging the collected fibers. Packing material that has a high electrostatic charge on its surface (e.g., expanded polystyrene) cannot be used because such material can cause loss of fibers to the sides of the cassette. - Calibrate each personal sampling pump before and after use with a representative filter cassette installed between the pump and the calibration devices. - 7. Personal samples shall be taken in the "breathing zone" of the employee (i.e., attached to or near the collar or lapel near the worker's face). - 8. Fiber counts shall be made by positive phase contrast using a microscope with an 8 to 10 X eyepiece and a 40 to 45 X objective for a total magnification of approximately 400 X and a numerical aperture of 0.65 to 0.75. The microscope shall also be fitted with a green or blue filter. - 9. The microscope shall be fitted with a Walton-Beckett eyepiece graticule calibrated for a field diameter of 100 micrometers (+/ 2 micrometers). - 10. The phase-shift detection limit of the microscope shall be about 3 degrees measured using the HSE phase shift test slide as outlined below. - a. Place the test slide on the microscope stage and center it under the phase objective. b. Bring the blocks of grooved lines into - b. Bring the blocks of grooved lines into focus. Note: The slide consists of seven sets of grooved lines (ca. 20 grooves to each block) in descending order of visibility from sets 1 to 7, seven being the least visible. The requirements for asbestos, tremolite. anthophyllite, and actinolite counting are that the microscope optics must resolve the grooved lines in set 3 completely, although they may appear somewhat faint, and that the grooved lines in sets 6 and 7 must be invisible. Sets 4 and 5 must be at least partially visible but may vary slightly in visibility between microscopes. A microscope that fails to meet these requirements has either too low or too high a resolution to be used for asbestos, tremolite, anthophyllite, and actinolite counting. c. If the image deteriorates, clean and adjust the microscope optics. If the problem persists, consult the microscope manufacturer. 11. Each set of samples taken will include 10 percent blanks or a minimum of 2 blanks. These blanks must come from the same lot as the filters used for sample collection. The field blank results shall be averaged and subtracted from the analytical results before reporting. Any samples represented by a blank having a fiber count in excess of the detection limit of the method being used shall be rejected. 12. The samples shall be mounted by the acetone/triacetin method or a method with an equivalent index of refraction and similar clarity. 13. Observe the following counting rules.a. Count only fibers equal to or longer than5 micrometers. Measure the length of curved fibers along the curve. b. Count all particles as asbestos, tremolite, anthophyllite, and actinolite that have a length-to-width ratio (aspect ratio) of 3:1 or greater. - c. Fibers lying entirely within the boundary of the Walton-Beckett graticule field shall receive a count of 1. Fibers crossing the boundary once, having one end within the circle, shall receive the count of one half (½). Do not count any fiber that crosses the graticule boundary more than once. Reject and do not count any other fibers even though they may be visible outside the graticule area. - d. Count bundles of fibers as one fiber unless individual fibers can be identified by observing both ends of an individual fiber. - e. Count enough graticule fields to yield 100 fibers. Count a minimum of 20 fields; stop counting at 100 fields regardless of fiber count. - 14. Blind recounts shall be conducted at the rate of 10 percent. # Quality Control Procedures - 1. Intra-laboratory program. Each laboratory and/or each company with more than one microscopist counting slides shall establish a statistically designed quality assurance program involving blind recounts and comparisons between microscopists to monitor the variability of counting by each microscopist and between microscopists. In a company with more than one laboratory, the program shall include all laboratories and shall also evaluate the laboratory-to-laboratory variability. - 2. a. Interlaboratory program. Each laboratory analyzing asbestos, tremolite, anthophyllite, and actinolite samples for compliance determination shall implement an interlaboratory quality assurance program that as a minimum includes participation of at least two other independent laboratories. Each laboratory shall participate in round robin testing at least once every 6 months with at least all the other laboratories in its interlaboratory quality assurance group. Each laboratory shall submit slides typical of its own work load for use in this program. The round robin shall be designed and results analyzed using appropriate statistical methodology. - b. All laboratories should participate in a national sample testing scheme such as the Proficiency Analytical Testing Program (PAT), the Asbestos Registry sponsored by the American Industrial Hygiene Association - 3. All individuals performing asbestos, tremolite, anthophyllite, and actinolite analysis must have taken the NIOSH course for sampling and evaluating airborne asbestos, tremolite, anthophyllite, and actinolite dust or an equivalent course. When the use of different microscopes contributes to differences between counters and laboratories, the effect of the different microscope shall be evaluated and the microscope shall be replaced, as necessary. 5. Current results of these quality assurance programs shall be posted in each laboratory to keep the microscopists informed. Appendix B to § 1915.1001—Detailed Procedures for Asbestos Sampling and Analysis (Non-mandatory) Analytical Procedure: A portion of the sample filter is cleared and prepared for asbestos fiber counting by Phase Contrast Microscopy (PCM) at 400X. Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources can be substituted. #### 1. Introduction This method describes the collection of airborne asbestos fibers using calibrated sampling pumps with mixed-cellulose ester (MCE) filters and analysis by phase contrast microscopy (PCM). Some terms used are unique to this method and are defined below: Asbestos: A term for naturally occurring fibrous minerals. Asbestos includes chrysotile, crocidolite, amosite (cummingtonite-grunerite asbestos), tremolite asbestos, actinolite asbestos, anthophyllite asbestos, and any of
these minerals that have been chemically treated and/or altered. The precise chemical formulation of each species will vary with the location from which it was mined. Nominal compositions are listed: $\begin{array}{lll} Chrysotile & & Mg_3Si_2O_5(OH)_4\\ Crocidolite & & Na_2Fe_3{}^2+Fe_2{}^3+Si_8O_{22}(OH)2\\ Amosite & & (Mg,Fe)_7Si_8O_{22}(OH)_2\\ Tremolite-actinolite. & Ca_2(Mg,Fe)_5Si_8O_{22}(OH)_2\\ \end{array}$ Anthophyllite (Mg,Fe)7Si8O22(OH)2 Asbestos Fiber: A fiber of asbestos which meets the criteria specified below for a fiber. Aspect Ratio: The ratio of the length of a fiber to it's diameter (e.g. 3:1, 5:1 aspect ratios). Cleavage Fragments: Mineral particles formed by comminution of minerals, especially those characterized by parallel sides and a moderate aspect ratio (usually less than 20:1). Detection Limit: The number of fibers necessary to be 95% certain that the result is greater than zero. Differential Counting: The term applied to the practice of excluding certain kinds of fibers from the fiber count because they do not appear to be asbestos. Fiber: A particle that is 5 μ m or longer, with a length-to-width ratio of 3 to 1 or longer. Field: The area within the graticule circle that is superimposed on the microscope image. Set: The samples which are taken, submitted to the laboratory, analyzed, and for which, interim or final result reports are generated. Tremolite, Anthophyllite, and Actinolite: The non-asbestos form of these minerals which meet the definition of a fiber. It includes any of these minerals that have been chemically treated and/or altered. Walton-Beckett Graticule: An eyepiece graticule specifically designed for asbestos fiber counting. It consists of a circle with a projected diameter of $100\pm2~\mu m$ (area of about $0.00785~mm^2$) with a crosshair having tic-marks at 3- μm intervals in one direction and 5- μm in the orthogonal direction. There are marks around the periphery of the circle to demonstrate the proper sizes and shapes of fibers. This design is reproduced in Figure 2. The disk is placed in one of the microscope eyepieces so that the design is superimposed on the field of view. #### 1.1. History Early surveys to determine asbestos exposures were conducted using impinger counts of total dust with the counts expressed as million particles per cubic foot. The British Asbestos Research Council recommended filter membrane counting in 1969. In July 1969, the Bureau of Occupational Safety and Health published a filter membrane method for counting asbestos fibers in the United States. This method was refined by NIOSH and published as P & CAM 239. On May 29, 1971, OSHA specified filter membrane sampling with phase contrast counting for evaluation of asbestos exposures at work sites in the United States. The use of this technique was again required by OSHA in 1986. Phase contrast microscopy has continued to be the method of choice for the measurement of occupational exposure to asbestos. # 1.2. Principle Air is drawn through a MCE filter to capture airborne asbestos fibers. A wedge shaped portion of the filter is removed, placed on a glass microscope slide and made transparent. A measured area (field) is viewed by PCM. All the fibers meeting a defined criteria for asbestos are counted and considered a measure of the airborne asbestos concentration. # 1.3. Advantages and Disadvantages There are four main advantages of PCM over other methods: (1) The technique is specific for fibers. Phase contrast is a fiber counting technique which excludes non-fibrous particles from the analysis. (2) The technique is inexpensive and does not require specialized knowledge to carry out the analysis for total fiber counts. (3) The analysis is quick and can be performed on-site for rapid determination of air concentrations of asbestos fibers. (4) The technique has continuity with historical epidemiological studies so that estimates of expected disease can be inferred from long-term determinations of asbestos exposures. The main disadvantage of PCM is that it does not positively identify asbestos fibers. Other fibers which are not asbestos may be included in the count unless differential counting is performed. This requires a great deal of experience to adequately differentiate asbestos from non-asbestos fibers. Positive identification of asbestos must be performed by polarized light or electron microscopy techniques. A further disadvantage of PCM is that the smallest visible fibers are about 0.2 μm in diameter while the finest asbestos fibers may be as small as 0.02 µm in diameter. For some exposures, substantially more fibers may be present than are actually counted. # 1.4. Workplace Exposure Asbestos is used by the construction industry in such products as shingles, floor tiles, asbestos cement, roofing felts, insulation and acoustical products. Nonconstruction uses include brakes, clutch facings, paper, paints, plastics, and fabrics. One of the most significant exposures in the workplace is the removal and encapsulation of asbestos in schools, public buildings, and homes. Many workers have the potential to be exposed to asbestos during these operations. About 95% of the asbestos in commercial use in the United States is chrysotile. Crocidolite and amosite make up most of the remainder. Anthophyllite and tremolite or actinolite are likely to be encountered as contaminants in various industrial products. # 1.5. Physical Properties Asbestos fiber possesses a high tensile strength along its axis, is chemically inert, non-combustible, and heat resistant. It has a high electrical resistance and good sound absorbing properties. It can be weaved into cables, fabrics or other textiles, and also matted into asbestos papers, felts, or mats. # 2. Range and Detection Limit 2.1. The ideal counting range on the filter is 100 to 1,300 fibers/mm². With a Walton-Beckett graticule this range is equivalent to 0.8 to 10 fibers/field. Using NIOSH counting statistics, a count of 0.8 fibers/field would give an approximate coefficient of variation (CV) of 0.13. 2.2. The detection limit for this method is 4.0 fibers per 100 fields or 5.5 fibers/mm². This was determined using an equation to estimate the maximum CV possible at a specific concentration (95% confidence) and a Lower Control Limit of zero. The CV value was then used to determine a corresponding concentration from historical CV vs fiber relationships. As an example: Lower Control Limit (95% Confidence) = AC—1.645(CV)(AC) Where: AC = Estimate of the airborne fiber concentration (fibers/cc) Setting the Lower Control Limit = 0 and solving for 0 = AC--1.645(CV)(AC) CV = 0.61 This value was compared with CV vs. count curves. The count at which CV = 0.61 for Leidel-Busch counting statistics (8.9.) or for an OSHA Salt Lake Technical Center (OSHA-SLTC) CV curve (see Appendix A for further information) was 4.4 fibers or 3.9 fibers per 100 fields, respectively. Although a lower detection limit of 4 fibers per 100 fields is supported by the OSHA-SLTC data, both data sets support the 4.5 fibers per 100 fields value. # 3. Method Performance—Precision and Accuracy Precision is dependent upon the total number of fibers counted and the uniformity of the fiber distribution on the filter. A general rule is to count at least 20 and not more than 100 fields. The count is discontinued when 100 fibers are counted, provided that 20 fields have already been counted. Counting more than 100 fibers results in only a small gain in precision. As the total count drops below 10 fibers, an accelerated loss of precision is noted. At this time, there is no known method to determine the absolute accuracy of the asbestos analysis. Results of samples prepared through the Proficiency Analytical Testing (PAT) Program and analyzed by the OSHA-SLTC showed no significant bias when compared to PAT reference values. The PAT samples were analyzed from 1987 to 1989 (N=36) and the concentration range was from 120 to 1,300 fibers/mm². ## -4. Interferences Fibrous substances, if present, may interfere with asbestos analysis. Some common fibers are: Perlite veins. Some synthetic fibers. Sponge spicules and diatoms. Microorganisms Wollastonite. The use of electron microscopy or optical tests such as polarized light, and dispersion staining may be used to differentiate these materials from asbestos when necessary. #### 5. Sampling # 5.1. Equipment 5.1.1. Sample assembly (The assembly is shown in Figure 3). Conductive filter holder consisting of a 25-mm diameter, 3-piece cassette having a 50-mm long electrically conductive extension cowl. Backup pad, 25-mm, cellulose. Membrane filter, mixed-cellulose ester (MCE), 25-mm, plain, white. 0.8- to 1.2-µm pore size. Notes: (a) DO NOT RE-USE CASSETTES. (b) Fully conductive cassettes are required to reduce fiber loss to the sides of the cassette due to electrostatic attraction. (c) Purchase filters which have been selected by the manufacturer for asbestos counting or analyze representative filters for fiber background before use. Discard the filter lot if more than 4 fibers/100 fields are found. (d) To decrease the possibility of contamination, the sampling system (filterbackup pad-cassette) for asbestos is usually preassembled by the manufacturer. 5.1.2. Gel bands for sealing cassettes. 5.1.3. Sampling pump. Each pump must be a battery operated, self-contained unit small enough to be placed on the monitored employee and not interfere with the work being performed. The pump must be capable of sampling at 2.5 liters per minute (L/min) for the required sampling time. 5.1.4. Flexible tubing, 6-mm bore. 5.1.5. Pump calibration. Stopwatch and bubble tube/burette or electronic meter. # 5.2. Sampling Procedure 5.2.1. Seal the point where the base and cowl of each cassette meet (see Figure 3) with a gel band or tape. 5.2.2. Charge the pumps completely before beginning. 5.2.3. Connect each pump to a calibration cassette with an
appropriate length of 6-mm bore plastic tubing. Do not use luer connectors—the type of cassette specified above has built-in adapters. 5.2.4. Select an appropriate flow rate for the situation being monitored. The sampling flow rate must be between 0.5 and 5.0 L/min for personal sampling and is commonly set between 1 and 2 L/min. Always choose a flow rate that will not produce overloaded filters 5.2.5. Calibrate each sampling pump before and after sampling with a calibration cassette in-line (Note: This calibration cassette should be from the same lot of cassettes used for sampling). Use a primary standard (e.g. bubble burette) to calibrate each pump. If possible, calibrate at the sampling site. Note: If sampling site calibration is not possible, environmental influences may affect the flow rate. The extent is dependent on the type of pump used. Consult with the pump manufacturer to determine dependence on environmental influences. If the pump is affected by temperature and pressure changes, use the formula in Appendix B to this section to calculate the actual flow rate. 5.2.6. Connect each pump to the base of each sampling cassette with flexible tubing. Remove the end cap of each cassette and take each air sample open face. Assure that each sample cassette is held open side down in the employee's breathing zone during sampling. The distance from the nose/mouth of the employee to the cassette should be about 10 cm. Secure the cassette on the collar or lapel of the employee using spring clips or other similar devices. 5.2.7. A suggested minimum air volume when sampling to determine TWA compliance is 25 L. For Excursion Limit (30 min sampling time) evaluations, a minimum air volume of 48 L is recommended. 5.2.8. The most significant problem when sampling for asbestos is overloading the filter with non-asbestos dust. Suggested maximum air sample volumes for specific environments are: | Environment · | Air vol.
(L) | |---|-----------------| | Asbestos removal operations (visible dust). | | | Asbestos removal operations (little dust). | 240 | | Office environments | 400 to
2,400 | Caution: Do not overload the filter with dust. High levels of non-fibrous dust particles may obscure fibers on the filter and lower the count or make counting impossible. If more than about 25 to 30% of the field area is obscured with dust, the result may be biased low. Smaller air volumes may be necessary when there is excessive non-asbestos dust in the air. While sampling, observe the filter with a small flashlight. If there is a visible layer of dust on the filter, stop sampling, remove and seal the cassette, and replace with a new sampling assembly. The total dust loading should not exceed 1 mg. 5.2.9. Blank samples are used to determine if any contamination has occurred during sample handling. Prepare two blanks for the first 1 to 20 samples. For sets containing greater than 20 samples, prepare blanks as 10% of the samples. Handle blank samples in the same manner as air samples with one exception: Do not draw any air through the blank samples. Open the blank cassette in the place where the sample cassettes are mounted on the employee. Hold it open for about 30 seconds. Close and seal the cassette appropriately. Store blanks for shipment with the sample cassettes. 5.2.10. Immediately after sampling, close and seal each cassette with the base and plastic plugs. Do not touch or puncture the filter membrane as this will invalidate the analysis. 5.2.11. Attach a seal (OSHA-21 or equivalent) around each cassette in such a way as to secure the end cap plug and base plug. Tape the ends of the seal together since the seal is not long enough to be wrapped end-to-end. Also wrap tape around the cassette at each joint to keep the seal secure. # 5.3. Sample Shipment 5.3.1. Send the samples to the laboratory with paperwork requesting asbestos analysis. List any known fibrous interferences present during sampling on the paperwork. Also, note the workplace operation(s) sampled. 5.3.2. Secure and handle the samples in such that they will not rattle during shipment nor be exposed to static electricity. Do not ship samples in expanded polystyrene peanuts, vermiculite, paper shreds, or excelsior. Tape sample cassettes to sheet bubbles and place in a container that will cushion the samples without rattling. 5.3.3. To avoid the possibility of sample contamination, always ship bulk samples in separate mailing containers. #### 6. Analysis # 6.1. Safety Precautions 6.1.1. Acetone is extremely flammable and precautions must be taken not to ignite it. Avoid using large containers or quantities of acetone. Transfer the solvent in a ventilated laboratory hood. Do not use acetone near any open flame. For generation of acetone vapor, use a spark free heat source. 6.1.2. Any asbestos spills should be cleaned up immediately to prevent dispersal of fibers. Prudence should be exercised to avoid contamination of laboratory facilities or exposure of personnel to asbestos. Asbestos spills should be cleaned up with wet methods and/or a High Efficiency Particulate-Air (HEPA) filtered vacuum. Caution: Do not use a vacuum without a HEPA filter—It will disperse fine asbestos fibers in the air. ## 6.2. Equipment 6.2.1. Phase contrast microscope with binocular or trinocular head. 6.2.2. Widefield or Huygenian 10X eyepieces (NOTE: The eyepiece containing the graticule must be a focusing eyepiece. Use a 40X phase objective with a numerical aperture of 0.65 to 0.75). 6.2.3. Kohler illumination (if possible) with green or blue filter. 6.2.4. Walton-Beckett Graticule, type G-22 with 100 ± 2 μm projected diameter. 6.2.5. Mechanical stage. A rotating mechanical stage is convenient for use with polarized light. 6.2.6. Phase telescope. 6.2.7. Stage micrometer with 0.01-mm subdivisions. 6.2.8. Phase-shift test slide, mark II (Available from PTR optics Ltd., and also McCrone). 6.2.9. Precleaned glass slides, 25 mm X 75 mm. One end can be frosted for convenience in writing sample numbers, etc., or paste-on labels can be used. 6.2.10. Cover glass #11/2. 6.2.11. Scalpel (#10, curved blade). 6.2.12. Fine tipped forceps. 6.2.13. Aluminum block for clearing filter (see Appendix D and Figure 4). 6.2.14. Automatic adjustable pipette, 100o 500-µL. 6.2.15. Micropipette, 5 μL. #### 6.3. Reagents 6.3.1. Acetone (HPLC grade). 6.3.2. Triacetin (glycerol triacetate). 6.3.3. Lacquer or nail polish. # 6.4. Standard Preparation A way to prepare standard asbestos samples of known concentration has not been developed. It is possible to prepare replicate samples of nearly equal concentration. This has been performed through the PAT program. These asbestos samples are distributed by the AIHA to participating laboratories. Since only about one-fourth of a 25-mm sample membrane is required for an asbestos count, any PAT sample can serve as a "standard" for replicate counting. #### 6.5. Sample Mounting Note: See Safety Precautions in Section 6.1. before proceeding. The objective is to produce samples with a smooth (non-grainy) background in a medium with a refractive index of approximately 1.46. The technique below collapses the filter for easier focusing and produces permanent mounts which are useful for quality control and interlaboratory comparison. An aluminum block or similar device is required for sample preparation. 6.5.1. Heat the aluminum block to about 70° C. The hot block should not be used on any surface that can be damaged by either the heat or from exposure to acetone. 6.5.2. Ensure that the glass slides and cover glasses are free of dust and fibers. 6.5.3. Remove the top plug to prevent a vacuum when the cassette is opened. Clean the outside of the cassette if necessary. Cut the seal and/or tape on the cassette with a razor blade. Very carefully separate the base from the extension cowl, leaving the filter and backup pad in the base. 6.5.4. With a rocking motion cut a triangular wedge from the filter using the scalpel. This wedge should be one-sixth to one-fourth of the filter. Grasp the filter wedge with the forceps on the perimeter of the filter which was clamped between the cassette pieces. DO NOT TOUCH the filter with your finger. Place the filter on the glass slide sample side up. Static electricity will usually keep the filter on the slide until it is cleared. 6.5.5. Place the tip of the micropipette containing about 200 μ L acetone into the aluminum block. Insert the glass slide into the receiving slot in the aluminum block. Inject the acetone into the block with slow, steady pressure on the plunger while holding the pipette firmly in place. Wait 3 to 5 seconds for the filter to clear, then remove the pipette and slide from the aluminum block 6.5.6. Immediately (less than 30 seconds) place 2.5 to 3.5 μ L of triacetin on the filter (**Note:** Waiting longer than 30 seconds will result in increased index of refraction and decreased contrast between the fibers and the preparation. This may also lead to separation of the cover slip from the slide). 6.5.7. Lower a cover slip gently onto the filter at a slight angle to reduce the possibility of forming air bubbles. If more than 30 seconds have elapsed between acetone exposure and triacetin application, glue the edges of the cover slip to the slide with lacquer or nail polish. 6.5.8. If clearing is slow, warm the slide for 15 min on a hot plate having a surface temperature of about 50° C to hasten clearing. The top of the hot block can be used if the slide is not heated too long. 6.5.9. Counting may proceed immediately after clearing and mounting are completed. #### 6.6. Sample Analysis Completely align the microscope according to the manufacturer's instructions. Then, align the microscope using the following general alignment routine at the beginning of every counting session and more often if necessary. #### 6.6.1. Alignment (1) Clean all optical surfaces. Even a small amount of dirt can
significantly degrade the image. (2) Rough focus the objective on a sample. (3) Close down the field iris so that it is visible in the field of view. Focus the image of the iris with the condenser focus. Center the image of the iris in the field of view. (4) Install the phase telescope and focus on the phase rings. Critically center the rings. Misalignment of the rings results in astignatism which will degrade the image. (5) Place the phase-shift test slide on the microscope stage and focus on the lines. The analyst must see line set 3 and should see at least parts of 4 and 5 but, not see line set 6 or 6. A microscope/microscopist combination which does not pass this test may not be used. # 6.6.2. Counting Fibers (1) Place the prepared sample slide on the mechanical stage of the microscope. Position the center of the wedge under the objective lens and focus upon the sample. (2) Start counting from one end of the wedge and progress along a radial line to the other end (count in either direction from perimeter to wedge tip). Select fields randomly, without looking into the eyepieces, by slightly advancing the slide in one direction with the mechanical stage control. (3) Continually scan over a range of focal planes (generally the upper 10 to 15 μ m of the filter surface) with the fine focus control during each field count. Spend at least 5 to 15 seconds per field. (4) Most samples will contain asbestos fibers with fiber diameters less than 1 µm. Look carefully for faint fiber images. The small diameter fibers will be very hard to see. However, they are an important contribution to the total count. (5) Count only fibers equal to or longer than 5 µm. Measure the length of curved fibers along the curve. (6) Count fibers which have a length to width ratio of 3:1 or greater. (7) Count all the fibers in at least 20 fields. Continue counting until either 100 fibers are counted or 100 fields have been viewed; whichever occurs first. Count all the fibers in the final field. (8) Fibers lying entirely within the boundary of the Walton-Beckett graticule field shall receive a count of 1. Fibers crossing the boundary once, having one end within the circle shall receive a count of ½. Do not count any fiber that crosses the graticule boundary more than once. Reject and do not count any other fibers even though they may be visible outside the graticule area. If a fiber touches the circle, it is considered to cross the line. (9) Count bundles of fibers as one fiber unless individual fibers can be clearly identified and each individual fiber is clearly not connected to another counted fiber. See Figure 2 for counting conventions. (10) Record the number of fibers in each field in a consistent way such that filter non-uniformity can be assessed. (11) Regularly check phase ring alignment. (12) When an agglomerate (mass of material) covers more than 25% of the field of view, reject the field and select another. Do not include it in the number of fields counted. (13) Perform a "blind recount" of 1 in every 10 filter wedges (slides). Re-label the slides using a person other than the original counter. # • 6.7. Fiber Identification As previously mentioned in Section 1.3., PCM does not provide positive confirmation of asbestos fibers. Alternate differential counting techniques should be used if discrimination is desirable. Differential counting may include primary discrimination based on morphology, polarized light analysis of fibers, or modification of PCM data by Scanning Electron or Transmission Electron Microscopy. A great deal of experience is required to routinely and correctly perform differential counting. It is discouraged unless it is legally necessary. Then, only if a fiber is obviously not asbestos should it be excluded from the count. Further discussion of this technique can be found in reference 8.10. If there is a question whether a fiber is asbestos or not, follow the rule: "WHEN IN DOUBT, COUNT," 6.8. Analytical Recommendations—Quality Control System 6.8.1. All individuals performing asbestos analysis must have taken the NIOSH course for sampling and evaluating airborne asbestos or an equivalent course. 6.8.2. Each laboratory engaged in asbestos counting shall set up a slide trading arrangement with at least two other laboratories in order to compare performance and eliminate inbreeding of error. The slide exchange occurs at least semiannually, The round robin results shall be posted where all analysts can view individual analyst's results. 6.8.3. Each laboratory engaged in asbestos counting shall participate in the Proficiency Analytical Testing Program, the Asbestos Analyst Registry or equivalent. 6.8.4. Each analyst shall select and count prepared slides from a "slide bank". These are quality assurance counts. The slide bank shall be prepared using uniformly distributed samples taken from the workload. Fiber densities should cover the entire range routinely analyzed by the laboratory. These slides are counted blind by all counters to establish an original standard deviation. This historical distribution is compared with the quality assurance counts. A counter must have 95% of all quality control samples counted within three standard deviations of the historical mean. This count is then integrated into a new historical mean and standard deviation for the slide. The analyses done by the counters to establish the slide bank may be used for an interim quality control program if the data are treated in a proper statistical fashion. # 7. CALCULATIONS 7.1. Calculate the estimated airborne asbestos fiber concentration on the filter sample using the following formula: where: AC=Airborne fiber concentration $$AC = \frac{\left[\left(\frac{FB}{FL} \right) - \left(\frac{BFB}{BFL} \right) \right] \times ECA}{1000 \times FR \times T \times MFA}$$ FB=Total number of fibers greater than 5 μm counted FL=Total number of fields counted on the filter BFB=Total number of fibers greater than 5 µm counted in the blank BFL=Total number of fields counted on the blank ECA=Effective collecting area of filter (385 mm² nominal for a 25-mm filter.) FR=Pump flow rate (L/min) MFA=Microscope count field area (mm²). This is 0.00785 mm² for a Walton-Beckett Graticule. T=Sample collection time (min) 1,000=Conversion of L to cc Note: The collection area of a filter is seldom equal to 385 mm². It is appropriate for laboratories to routinely monitor the exact diameter using an inside micrometer. The collection area is calculated according to the formula: Area= $\pi(d/2)^2$ # 7.2. Short-cut Calculation Since a given analyst always has the same interpupillary distance, the number of fields per filter for a particular analyst will remain constant for a given size filter. The field size for that analyst is constant (i.e. the analyst is using an assigned microscope and is not changing the reticle). For example, if the exposed area of the filter is always 385 mm² and the size of the field is always 0.00785 mm², the number of fields per filter will always be 49,000. In addition it is necessary to convert liters of air to cc. These three constants can then be combined such that ECA/(1,000 X MFA)=49. The previous equation simplifies to: $$AC = \frac{\left(\frac{FB}{FL}\right) - \left(\frac{BFB}{BFL}\right) \times 49}{FR \times T}$$ # $AC = \frac{FR \times T}{FR \times T}$ 7.3. Recount Calculations As mentioned in step 13 of Section 6.6.2., a "blind recount" of 10% of the slides is performed. In all cases, differences will be observed between the first and second counts of the same filter wedge. Most of these differences will be due to chance alone, that is, due to the random variability (precision) of the count method. Statistical recount criteria enables one to decide whether observed differences can be explained due to chance alone or are probably due to systematic differences between analysts, microscopes, or other biasing factors. The following recount criterion is for a pair of counts that estimate AC in fibers/cc. The criterion is given at the type-I error level. That is, there is 5% maximum risk that we will reject a pair of counts for the reason that one might be biased, when the large observed difference is really due to chance. Reject a pair of counts if: $$\left| \sqrt{AC_2 - \sqrt{AC_1}} \right| > 2.78 \times \left(\sqrt{AC_{avg}} \right) \times CV_{FB}$$ Where: AC1=lower estimated airborne fiber concentration AC2=higher estimated airborne fiber concentration ACavg=average of the two concentration estimates CV_{FB}=CV for the average of the two concentration estimates If a pair of counts are rejected by this criterion then, recount the rest of the filters in the submitted set. Apply the test and reject any other pairs failing the test. Rejection shall include a memo to the industrial hygienist stating that the sample failed a statistical test for homogeneity and the true air concentration may be significantly different than the reported value. # 7.4. Reporting Results Report results to the industrial hygienist as fibers/cc. Use two significant figures. If multiple analyses are performed on a sample, an average of the results is to be reported unless any of the results can be rejected for cause. #### 8. References 8.1. Dreesen, W.C., et al, U.S. Public Health Service: A Study of Asbestosis in the Asbestos Textile Industry, (Public Health Bulletin No. 241), US Treasury Dept., Washington, DC, 1938. 8.2. Asbestos Research Council: The Measurement of Airborne Asbestos Dust by the Membrane Filter Method (Technical Note), Asbestos Research Council, Rockdale, Lancashire, Great Britain, 1969. 8.3. Bayer, S.G., Zumwalde, R.D., Brown, T.A., Equipment and Procedure for Mounting Millipore Filters and Counting Asbestos Fibers by Phase Contrast Microscopy, Bureau of Occupational Health, U.S. Dept. of Health, Education and Welfare, Cincinnati, OH, 1969. 8.4. NIOSH Manual of Analytical Methods, 2nd ed., Vol. 1 (DHEW/NIOSH Pub. No. 77– 157–A). National Institute
for Occupational Safety and Health, Cincinnati, OH, 1977. pp. 239–1-239–21. 8.5. Asbestos, Code of Federal Regulations 29 CFR 1910.1001. 1971. 8.6. Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite. Final Rule, Federal Register 51:119 (20 June 1986). pp.22612–22790. 8.7. Asbestos, Tremolite, Anthophyllite, and Actinolite, Code of Federal Regulations 1910.1001. 1988. pp 711–752. 8.8. Criteria for a Recommended Standard—Occupational Exposure to Asbestos (DHEW/NIOSH Pub. No. HSM 72– 10267), National Institute for Occupational Safety and Health NIOSH, Cincinnati,OH, 1972. pp. III–1–III–24. 8.9. Leidel, N.A., Bayer,S.G., Zumwalde, R.D., Busch, K.A., USPHS/NIOSH Membrane Filter Method for Evaluating Airborne Asbestos Fibers (DHEW/NIOSH Pub. No. 79–127). National Institute for Occupational Safety and Health, Cincinnati, OH, 1979. 8.10. Dixon, W.C., Applications of Optical Microscopy in Analysis of Asbestos and Quartz, Analytical Techniques in Occupational Health Chemistry, edited by D.D. Dollberg and A.W. Verstuyft. Wash. D.C.: American Chemical Society, (ACS Symposium Series 120) 1980. pp. 13-41. Quality Control The OSHA asbestos regulations require each laboratory to establish a quality control program. The following is presented as an example of how the OSHA-SLTC constructed its internal CV curve as part of meeting this requirement. Data for the CV curve shown below is from 395 samples collected during OSHA compliance inspections and analyzed from October 1980 through April 1986. Each sample was counted by 2 to 5 different counters independently of one another. The standard deviation and the CV statistic was calculated for each sample. This data was then plotted on a graph of CV vs. fibers/mm². A least squares regression was performed using the following equation: CV=antilog1₁₀[A(log₁₀(x))²+B(log₁₀(x))+C] x=the number of fibers/mm². Application of least squares gave: A=0.182205 B=-0.973343 C=0.327499 Using these values, the equation becomes: CV=antilog₁₀ [0.182205(log₁₀ $(x)^2 - 0.973343(\log_{10}(x)) + 0.327499$ Sampling Pump Flow Rate Corrections This correction is used if a difference greater than 5% in ambient temperature and/or pressure is noted between calibration and sampling sites and the pump does not compensate for the differences. $$Q_{act} = Q_{cal} \times \sqrt{\left(\frac{P_{cal}}{P_{act}}\right)} \times \left(\frac{T_{act}}{T_{cal}}\right)$$ Where: Q_{act}=actual flow rate Q_{cal}=calibrated flow rate (if a rotameter was used, the rotameter value) $$\begin{split} P_{\text{cal}} &= \text{uncorrected air pressure at calibration} \\ P_{\text{act}} &= \text{uncorrected air pressure at sampling site} \\ T_{\text{act}} &= \text{temperature at sampling site} \text{ (K)} \\ T_{\text{cal}} &= \text{temperature at calibration (K)} \end{split}$$ Walton-Beckett Graticule When ordering the Graticule for asbestos counting, specify the exact disc diameter needed to fit the ocular of the microscope and the diameter (mm) of the circular counting area. Instructions for measuring the dimensions necessary are listed: (1) Insert any available graticule into the focusing eyepiece and focus so that the graticule lines are sharp and clear. (2) Align the microscope. (3) Place a stage micrometer on the microscope object stage and focus the microscope on the graduated lines. (4) Measure the magnified grid length, PL (μm), using the stage micrometer. (5) Remove the graticule from the microscope and measure its actual grid length, AL (mm). This can be accomplished by using a mechanical stage fitted with verniers, or a jeweler's loupe with a direct reading scale. (6) Let D=100 μ m. Calculate the circle diameter, d_c (mm), for the Walton-Beckett graticule and specify the diameter when making a purchase: $$d_c = \frac{AL \times D}{PL}$$ Example: If PL=108 μ m, AL=2.93 mm and D=100 μ m, then, $$d_c = \frac{2.93 \times 100}{108} = 2.71 \text{mm}$$ (7) Each eyepiece-objective-reticle combination on the microscope must be calibrated. Should any of the three be changed (by zoom adjustment, disassembly, replacement, etc.), the combination must be recalibrated. Calibration may change if interpupillary distance is changed. Measure the field diameter, D (acceptable range: 100±2 μm) with a stage micrometer upon receipt of the graticule from the manufacturer. Determine the field area (mm²). Field Area= π (D/2)2 If D=100 μ m=0.1 mm, then Field Area= π (0.1 mm/2)²=0.00785 mm² The Graticule is available from: Graticules Ltd., Morley Road, Tonbridge TN9 IRN, Kent, England (Telephone 011–44–732–359061). Also available from PTR Optics Ltd., 145 Newton Street, Waltham, MA 02154 (telephone (617) 891–6000) or McCrone Accessories and Components, 2506 S. Michigan Ave., Chicago, IL 60616 [phone (312)-842–7100]. The graticule is custom made for each microscope. BILLING CODE 4510-26-P Figure 1: Walton-Beckett Graticule with some explanatory fibers. #### COUNTS FOR THE FIBERS IN THE FIGURE | Structure No. | Count | Explanation | | | | |---------------|-------|--|---|--|---| | 1 to 6 | 1 | Single fibers all contained within the circle. | | | | | 8 : | 0 | Fiber crosses circle once. Fiber too short. | | | · | | 9 | 2 | Two crossing fibers. Fiber outside graticule. | | | | | 11 | 0 | Fiber crosses graticule twice. | • | | | | 12 | . 1/2 | Although split, fiber only crosses once. | | | | ## and Quantitative Fit Testing Procedures. Mandatory Qualitative Fit Test Protocols #### I. Isoamyl Acetate Protocol - A. Odor threshold screening. 1. Three 1liter glass jars with metal lids (e.g. Mason or Bell jars) are required. - 2. Odor-free water (e.g. distilled or spring water) at approximately 25 °C shall be used for the solutions. - 3. The isoamyl acetate (IAA) (also known as isopentyl acetate) stock solution is prepared by adding 1 cc of pure IAA to 800 cc of odor free water in a 1-liter jar and shaking for 30 seconds. This solution shall be prepared new at least weekly. - 4. The screening test shall be conducted in a room separate from the room used for - Appendix C to § 1915.1001—Qualitative actual fit testing. The two rooms shall be well ventilated but shall not be connected to the same recirculating ventilation system. - 5. The odor test solution is prepared in a second jar by placing 0.4 cc of the stock solution into 500 cc of odor free water using a clean dropper or pipette. Shake for 30 seconds and allow to stand for two to three minutes so that the IAA concentration above the liquid may reach equilibrium. This solution may be used for only one day. - 6. A test blank is prepared in a third jar by adding 500 cc of odor free water. - 7. The odor test and test blank jars shall be labelled 1 and 2 for jar identification. If the labels are put on the lids they can be periodically peeled, dried off and switched to maintain the integrity of the test. - 8. The following instructions shall be typed on a card and placed on the table in front of the two test jars (i.e. 1 and 2): "The - purpose of this test is to determine if you can smell banana oil at a low concentration. The two bottles in front of you contain water. One of these bottles also contains a small amount of banana oil. Be sure the covers are on tight, then shake each bottle for two seconds. Unscrew the lid of each bottle, one at a time, and sniff at the mouth of the bottle. Indicate to the test conductor which bottle contains banana oil." - 9. The mixtures used in the IAA odor detection test shall be prepared in an area separate from where the test is performed, in order to prevent olfactory fatigue in the subject. - 10. If the test subject is unable to correctly identify the jar containing the odor test solution, the IAA qualitative fit test may not - 11. If the test subject correctly identifies the jar containing the odor test solution, the test subject may proceed to respirator selection and fit testing. - B. Respirator Selection. 1. The test subject shall be allowed to pick the most comfortable respirator from a selection including respirators of various sizes from different manufacturers. The selection shall include at least five sizes of elastomeric half facepieces, from at least two manufacturers. - 2. The selection process shall be conducted in a room separate from the fit-test chamber to prevent odor fatigue. Prior to the selection process, the test subject shall be shown how to put on a respirator, how it should be positioned on the face, how to set strap tension and how to determine a "comfortable" respirator. A mirror shall be available to assist the subject in evaluating the fit and positioning of the respirator. This instruction may not constitute the subject's formal training on respirator use, as it is only a review - 3. The test subject should understand that the employee is being asked to select the respirator which provides the most comfortable fit. Each respirator represents a different size and shape and, if fit properly and used properly will provide adequate protection. - 4. The test subject holds each facepiece up to the face and eliminates those which obviously do not give a comfortable fit. Normally, selection will begin with a halfmask and if a good fit cannot be found, the subject will be asked to test the full facepiece respirators. (A small percentage of users will not be able to wear any half-mask.) - 5. The more comfortable facepieces are noted; the most comfortable mask is donned and worn at least five minutes to assess comfort. All donning and adjustments of the facepiece shall be performed by the test subject without assistance from the test conductor or other person. Assistance in assessing comfort can be given by discussing the points in #6 below. If the test subject is not familiar with using a particular respirator, the test subject shall be directed to don the mask several times and to adjust the straps each time to become adept at setting proper tension on the straps. -
6. Assessment of comfort shall include reviewing the following points with the test subject and allowing the test subject adequate time to determine the comfort of the respirator: - Positioning of mask on nose. - Room for eye protection. Room to talk. - · Positioning mask on face and cheeks. - 7. The following criteria shall be used to help determine the adequacy of the respirator fit: - Chin properly placed. - · Strap tension. - Fit across nose bridge. - Distance from nose to chin. - Tendency to slip. - Self-observation in mirror. - 8. The test subject shall conduct the conventional negative and positive-pressure fit checks (e.g. see ANSI Z88.2–1980). Before conducting the negative- or positive-pressure test the subject shall be told to "seat" the mask by rapidly moving the head from side-to-side and up and down, while taking a few deep breaths. - 9. The test subject is now ready for fittesting. - 10. After passing the fit test, the test subject shall be questioned again regarding the comfort of the respirator. If it has become uncomfortable, another model of respirator shall be tried. - 11. The employee shall be given the opportunity to select a different facepiece and be retested if the chosen facepiece becomes increasingly uncomfortable at any time. - C. Fit test. 1. The fit test chamber shall be similar to a clear 55 gal drum liner suspended inverted over a 2 foot diameter frame, so that the top of the chamber is about 6 inches above the test subject's head. The inside top center of the chamber shall have a small hook attached. - 2. Each respirator used for the fitting and fit testing shall be equipped with organic vapor cartridges or offer protection against organic vapors. The cartridges or masks shall be changed at least weekly. - 3. After selecting, donning, and properly adjusting a respirator, the test subject shall wear it to the fit testing room. This room shall be separate from the room used for odor threshold screening and respirator selection, and shall be well ventilated, as by an exhaust fan or lab hood, to prevent general room contamination. - 4. A copy of the following test exercises and rainbow passage shall be taped to the inside of the test chamber: #### Test Exercises - i. Breathe normally. - ii. Breathe deeply. Be certain breaths are deep and regular. - iii. Turn head all the way from one side to the other. Inhale on each side. Be certain movement is complete. Do not bump the respirator against the shoulders. - iv. Nod head up-and-down. Inhale when head is in the full up position (looking toward ceiling). Be certain motions are complete and made about every second. Do not bump the respirator on the chest. - v. Talking. Talk aloud and slowly for several minutes. The following paragraph is called the Rainbow Passage. Reading it will result in a wide range of facial movements, and thus be useful to satisfy this requirement. Alternative passages which serve the same purpose may also be used. - vi. Jogging in place. vii. Breathe normally. #### Rainbow Passage When the sunlight strikes raindrops in the air, they act like a prism and form a rainbow. The rainbow is a division of white light into many beautiful colors. These take the shape of a long round arch, with its path high above, and its two ends apparently beyond the horizon. There is, according to legend, a boiling pot of gold at one end. People look, but no one ever finds it. When a man looks for something beyond reach, his friends say he is looking for the pot of gold at the end of the rainbow. - 5. Each test subject shall wear the respirator for at a least 10 minutes before starting the fit test. - 6. Upon entering the test chamber, the test subject shall be given a 6 inch by 5 inch - piece of paper towel or other porous absorbent single ply material, folded in half and wetted with three-quarters of one cc of pure IAA. The test subject shall hang the wet towel on the hook at the top of the chamber. - 7. Allow two minutes for the IAA test concentration to be reached before starting the fit-test exercises. This would be an appropriate time to talk with the test subject, to explain the fit test, the importance of cooperation, the purpose for the head exercises, or to demonstrate some of the exercises. 8. Each exercise described in #4 above shall be performed for at least one minute. 9. If at any time during the test, the subject detects the banana-like odor of IAA, the test has failed. The subject shall quickly exit from the test chamber and leave the test area to avoid olfactory fatigue. - 10. If the test is failed, the subject shall return to the selection room and remove the respirator, repeat the odor sensitivity test, select and put on another respirator, return to the test chamber, and again begin the procedure described in the c(4) through c(8) above. The process continues until a respirator that fits well has been found. Should the odor sensitivity test be failed, the subject shall wait about 5 minutes before retesting. Odor sensitivity will usually have returned by this time. - 11. If a person cannot pass the fit test described above wearing a half-mask respirator from the available selection, full facepiece models must be used. - 12. When a respirator is found that passes the test, the subject breaks the faceseal and takes a breath before exiting the chamber. This is to assure that the reason the test subject is not smelling the IAA is the good fit of the respirator facepiece seal and not olfactory fatigue. - 13. When the test subject leaves the chamber, the subject shall remove the saturated towel and return it to the person conducting the test. To keep the area from becoming contaminated, the used towels shall be kept in a self-sealing bag so there is no significant IAA concentration buildup in the test chamber during subsequent tests. - 14. At least two facepieces shall be selected for the IAA test protocol. The test subject shall be given the opportunity to wear them for one week to choose the one which is more comfortable to wear. - 15. Persons who have successfully passed this fit test with a half-mask respirator may be assigned the use of the test respirator in atmospheres with up to 10 times the PEL of airborne asbestos. In atmospheres greater than 10 times, and less than 100 times the PEL (up to 100 ppm), the subject must pass the IAA test using a full face negative pressure respirator. (The concentration of the 1AA inside the test chamber must be increased by ten times for QLFT of the full facepiece.) 16. The test shall not be conducted if there is any hair growth between the skin the facepiece sealing surface. 17. If hair growth or apparel interfere with a satisfactory fit, then they shall be altered or removed so as to eliminate interference and allow a satisfactory fit. If a satisfactory fit is still not attained, the test subject must use a positive-pressure respirator such as powered air-purifying respirators, supplied air respirator, or self-contained breathing apparatus. 18. If a test subject exhibits difficulty in breathing during the tests, she or he shall be referred to a physician trained in respirator diseases or pulmonary medicine to determine whether the test subject can wear a respirator while performing her or his duties. 19. Qualitative fit testing shall be repeated at least every six months. - 20. In addition, because the sealing of the respirator may be affected, qualitative fit testing shall be repeated immediately when the test subject has a: - (1) Weight change of 20 pounds or more. - (2) Significant facial scarring in the area of the facepiece seal, - (3) Significant dental changes; i.e.; multiple extractions without prothesis, or acquiring dentures, - (4) Reconstructive or cosmetic surgery, or(5) Any other condition that may interfere with facepiece sealing. - D. Recordkeeping. A summary of all test results shall be maintained in each office for 3 years. The summary shall include: - (1) Name of test subject. - (2) Date of testing. - (3) Name of the test conductor. - (4) Respirators selected (indicate manufacturer, model, size and approval number). - (5) Testing agent. - II. Saccharin Solution Aerosol Protocol - A. Respirator selection. Respirators shall be selected as described in section IB (respirator selection) above, except that each respirator shall be equipped with a particulate filter. - B. Taste Threshold Screening. - 1. An enclosure about head and shoulders shall be used for threshold screening (to determine if the individual can taste saccharin) and for fit testing. The enclosure shall be approximately 12 inches in diameter by 14 inches tall with at least the front clear to allow free movement of the head when a respirator is worn. - 2. The test enclosure shall have a threequarter inch hole in front of the test subject's nose and mouth area to accommodate the nebulizer nozzle. - 3. The entire screening and testing procedure shall be explained to the test subject prior to conducting the screening test. - 4. During the threshold screening test, the test subject shall don the test enclosure and breathe with open mouth with tongue extended. - 5. Using a DeVilbiss Model 40 Inhalation Medication Nebulizer or equivalent, the test conductor shall spray the threshold check solution into the enclosure. This nebulizer shall be clearly marked to distinguish it from the fit test solution nebulizer. - 6. The threshold check solution consists of 0.83 grams of sodium saccharin, USP in water. It can be prepared by putting 1 cc of the test solution (see C 7 below) in 100 cc of water. - 7. To produce the aerosol, the nebulizer bulb is firmly squeezed so that it collapses completely, then is released and allowed to fully expand. - 8. Ten squeezes of the nebulizer bulb are repeated rapidly and then the test subject is asked whether the saccharin can be tasted. - 9. If the first response is negative, ten more squeezes of the nebulizer bulb are repeated rapidly and the test subject is again asked whether
the saccharin can be tasted. - 10. If the second response is negative ten more squeezes are repeated rapidly and the test subject is again asked whether the saccharin can be tasted. - 11. The test conductor will take note of the number of squeezes required to elicit a taste - 12. If the saccharin is not tasted after 30 squeezes (Step 10), the saccharin fit test cannot be performed on the test subject. - 13. If a taste response is elicited, the test subject shall be asked to take note of the taste for reference in the fit test. - 14. Correct use of the nebulizer means that approximately 1 cc of liquid is used at a time in the nebulizer body. - 15. The nebulizer shall be thoroughly rinsed in water, shaken dry, and refilled at least every four hours. - C. Fit test. 1. The test subject shall don² and adjust the respirator without the assistance from any person. - 2. The fit test uses the same enclosure described in IIB above. - 3. Each test subject shall wear the respirator for a least 10 minutes before starting the fit test. - 4. The test subject shall don the enclosure while wearing the respirator selected in section IB above. This respirator shall be properly adjusted and equipped with a particulate filter. - 5. The test subject may not eat, drink (except plain water), or chew gum for 15 minutes before the test. - 6. A second DeVilbiss Model 40 Inhalation Medication Nebulizer is used to spray the fit test solution into the enclosure. This nebulizer shall be clearly marked to distinguish it from the screening test solution nebulizer. - 7. The fit test solution is prepared by adding 83 grams of sodium saccharin to 100 cc of warm water. - 8. As before, the test subject shall breathe with mouth open and tongue extended. - 9. The nebulizer is inserted into the hole in the front of the enclosure and the fit test solution is sprayed into the enclosure using the same technique as for the taste threshold screening and the same number of squeezes required to elicit a taste response in the screening. (See B8 through B10 above). - 10. After generation of the aerosol read the following instructions to the test subject. The test subject shall perform the exercises for one minute each. - i. Breathe normally. - ii. Breathe deeply. Be certain breaths are deep and regular. - iii. Turn head all the way from one side to the other. Be certain movement is complete. Inhale on each side. Do not bump the respirator against the shoulders. - iv. Nod head up-and-down. Be certain motions are complete. Inhale when head is in the full up position (when looking toward the ceiling). Do not to bump the respirator on the chest. - v. Talking. Talk aloud and slowly for several minutes. The following paragraph is called the Rainbow Passage. Reading it will result in a wide range of facial movements, and thus be useful to satisfy this requirement. Alternative passages which serve the same purpose may also be used. - vi. Jogging in place. - vii. Breathe normally. #### Rainbow Passage When the sunlight strikes raindrops in the air, they act like a prism and form a rainbow. The rainbow is a division of white light into many beautiful colors. These take the shape of a long round arch, with its path high above, and its two ends apparently beyond the horizon. There is, according to legend, a boiling pot of gold at one end. People look, but no one ever finds it. When a man looks for something beyond his reach, his friends say he is looking for the pot of gold at the end of the rainbow. - 11. At the beginning of each exercise, the aerosol concentration shall be replenished using one-half the number of squeezes as initially described in C9. - 12. The test subject shall indicate to the test conductor if at any time during the fit test the taste of saccharin is detected. - 13. If the saccharin is detected the fit is deemed unsatisfactory and a different respirator shall be tried. - 14. At least two facepieces shall be selected by the IAA test protocol. The test subject shall be given the opportunity to wear them for one week to choose the one which is more comfortable to wear. - 15. Successful completion of the test protocol shall allow the use of the half mask tested respirator in contaminated atmospheres up to 10 times the PEL of asbestos. In other words this protocol may be used assign protection factors no higher than ten. - 16. The test shall not be conducted if there is any hair growth between the skin and the facepiece sealing surface. - 17. If hair growth or apparel interfere with a satisfactory fit, then they shall be altered or removed so as to eliminate interference and allow a satisfactory fit. If a satisfactory fit is still not attained, the test subject must use a positive-pressure respirator such as powered air-purifying respirators, supplied air respirator, or self-contained breathing apparatus. - 18. If a test subject exhibits difficulty in breathing during the tests, she or he shall be referred to a physician trained in respirator diseases or pulmonary medicine to determine whether the test subject can wear a respirator while performing her or his duties. - 19. Qualitative fit testing shall be repeated at least every six months. - 20. In addition, because the sealing of the respirator may be affected, qualitative fit testing shall be repeated immediately when the test subject has a: - (1) Weight change of 20 pounds or more.(2) Significant facial scarring in the area of - the facepiece seal, (3) Significant dental changes; i.e.; - multiple extractions without prothesis, or acquiring dentures, - (4) Reconstructive or cosmetic surgery, or - (5) Any other condition that may interfere with facepiece sealing. - D. Recordkeeping. A summary of all test results shall be maintained in each office for 3 years. The summary shall include: - (1) Name of test subject - (2) Date of testing. - (3) Name of test conductor. - (4) Respirators selected (indicate manufacturer, model, size and approval number). - (5) Testing agent. #### III. Irritant Fume Protocol - A. Respirator selection. Respirators shall be selected as described in section IB above, except that each respirator shall be equipped with a combination of high-efficiency and acid-gas cartridges. - B. Fit test..1. The test subject shall be allowed to smell a weak concentration of the irritant smoke to familiarize the subject with the characteristic odor. - 2. The test subject shall properly don the respirator selected as above, and wear it for at least 10 minutes before starting the fit test. - The test conductor shall review this protocol with the test subject before testing. - 4. The test subject shall perform the conventional positive pressure and negative pressure fit checks (see ANSI Z88.2 1980). Failure of either check shall be cause to select an alternate respirator. - 5. Break both ends of a ventilation smoke tube containing stannic oxychloride, such as the MSA part #5645, or equivalent. Attach a short length of tubing to one end of the smoke tube. Attach the other end of the smoke tube to a low pressure air pump set to deliver 200 milliliters per minute. - 6. Advise the test subject that the smoke can be irritating to the eyes and instruct the subject to keep the eyes closed while the test is performed. - 7. The test conductor shall direct the stream of irritant smoke from the tube towards the faceseal area of the test subject. The person conducting the test shall begin with the tube at least 12 inches from the facepiece and gradually move to within one inch, moving around the whole perimeter of the mask. - 8. The test subject shall be instructed to do the following exercises while the respirator is being challenged by the smoke. Each exercise shall be performed for one minute. - i. Breathe normally. - ii. Breathe deeply. Be certain breaths are deep and regular. - iii. Turn head all the way from one side to the other. Be certain movement is complete. Inhale on each side. Do not bump the respirator against the shoulders. - iv. Nod head up-and-down. Be certain motions are complete and made every second. Inhale when head is in the full up position (looking toward ceiling). Do not bump the respirator against the chest. - v. Talking. Talk aloud and slowly for several minutes. The following paragraph is called the Rainbow Passage. Reading it will result in a wide range of facial movements, and thus be useful to satisfy this requirement. Alternative passages which serve the same purpose may also be used. Rainbow Passage When the sunlight strikes raindrops in the air, they act like a prism and form a rainbow. The rainbow is a division of white light into many beautiful colors. These take the shape of a long round arch, with its path high above, and its two end apparently beyond the horizon. There is, according to legend, a boiling pot of gold at one end. People look, but no one ever finds it. When a man looks for something beyond his reach, his friends say he is looking for the pot of gold at the end of the rainbow. vi. Jogging in Place. - vii. Breathe normally. 9. The test subject shall indicate to the test conductor if the irritant smoke is detected. If smoke is detected, the test conductor shall stop the test. In this case, the tested respirator is rejected and another respirator shall be selected. - 10. Each test subject passing the smoke test (i.e. without detecting the smoke) shall be given a sensitivity check of smoke from the same tube to determine if the test subject reacts to the smoke. Failure to evoke a response shall void the fit test. - 11. Steps B4, B9, B10 of this fit test protocol shall be performed in a location with exhaust ventilation sufficient to prevent general contamination of the testing area by the test agents. - 12. At Jeast two facepieces shall be selected by the IAA test protocol. The test subject shall be given the opportunity to wear them for one week to choose the one which is more comfortable to wear. - 13. Respirators successfully tested by the protocol may be used
in contaminated atmospheres up to ten times the PEL of asbestos. - 14. The test shall not be conducted if there is any hair growth between the skin and the facepiece sealing surface. - 15. If hair growth or apparel interfere with a satisfactory fit, then they shall be altered or removed so as to eliminate interference and allow a satisfactory fit. If a satisfactory fit is still not attained, the test subject must use a positive-pressure respirator such as powered air-purifying respirators, supplied air respirator, or self-contained breathing apparatus. - 16. If a test subject exhibits difficulty in breathing during the tests, she or he shall be referred to a physician trained in respirator diseases or pulmonary medicine to determine whether the test subject can wear a respirator while performing her or his duties. - 17. Qualitative fit testing shall be repeated at least every six months. - 18. In addition, because the sealing of the respirator may be affected, qualitative fit testing shall be repeated immediately when the test subject has a: - (1) Weight change of 20 pounds or more, - (2) Significant facial scarring in the area of the facepiece seal, - (3) Significant dental changes; i.e.; multiple extractions without prothesis, or acquiring dentures, - (4) Reconstructive or cosmetic surgery, or (5) Any other condition that may interfere with facepiece sealing. - D. Recordkeeping. A summary of all test results shall be maintained in each office for 3 years. The summary shall include: - (1) Name of test subject - (2) Date of testing. - (3) Name of test conductor. - (4) Respirators selected (indicate manufacturer, model, size and approval number). - (5) Testing agent #### Quantitative Fit Test Procedures #### 1. General - a. The method applies to the negativepressure non-powered air-purifying respirators only. - b. The employer shall assign one individual who shall assume the full responsibility for implementing the respirator quantitative fit test program. #### 2. Definition - a. "Quantitative Fit Test" means the measurement of the effectiveness of a respirator seal in excluding the ambient atmosphere. The test is performed by dividing the measured concentration of challenge agent in a test chamber by the measured concentration of the challenge agent inside the respirator facepiece when the normal air purifying element has been replaced by an essentially perfect purifying element. - b. "Challenge Agent" means the air contaminant introduced into a test chamber so that its concentration inside and outside the respirator may be compared. - c. "Test Subject" means the person wearing the respirator for quantitative fit testing. - testing. d. "Normal Standing Position" means standing erect and straight with arms down along the sides and looking straight ahead. e. "Fit Factor" means the ratio of challenge - e. "Fit Factor" means the ratio of challenge agent concentration outside with respect to the inside of a respirator inlet covering (facepiece or enclosure). #### 3. Apparatus - a. Instrumentation. Corn oil, sodium chloride or other appropriate aerosol generation, dilution, and measurement systems shall be used for quantitative fit test. - b. Test chamber. The test chamber shall be large enough to permit all test subjects to freely perform all required exercises without distributing the challenge agent concentration or the measurement apparatus. The test chamber shall be equipped and constructed so that the challenge agent is effectively isolated from the ambient air yet uniform in concentration throughout the chamber. - c. When testing air-purifying respirators, the normal filter or cartridge element shall be replaced with a high-efficiency particular filter supplied by the same manufacturer. - d. The sampling instrument shall be selected so that a strip chart record may be made of the test showing the rise and fall of challenge agent concentration with each inspiration and expiration at fit factors of at least 2.000. - e. The combination of substitute airpurifying elements (if any), challenge agent, and challenge agent concentration in the test chamber shall be such that the test subject is not exposed in excess of PEL to the challenge agent at any time during the testing process. - f. The sampling port on the test specimen respirator shall be placed and constructed so that there is no detectable leak around the port, a free air flow is allowed into the sampling line at all times and so there is no interference with the fit or performance of the respirator. - g. The test chamber and test set-up shall permit the person administering the test to observe one test subject inside the chamber during the test. - h. The equipment generating the challenge atmosphere shall maintain the concentration of challenge agent constant within a 10 percent variation for the duration of the test. - i. The time lag (interval between an event and its being recorded on the strip chart) of the instrumentation may not exceed 2 seconds. - The tubing for the test chamber atmosphere and for the respirator sampling port shall be the same diameter, length and material. It shall be kept as short as possible. The smallest diameter tubing recommended by the manufacturer shall be used. - k. The exhaust flow from the test chamber shall pass through a high-efficiency filter before release to the room. - When sodium chloride aerosol is used, the relative humidity inside the test chamber shall not exceed 50 percent. #### 4. Procedural Requirements - a. The fitting of half-mask respirators should be started with those having multiple sizes and a variety of interchangeable cartridges and canisters such as the MSA Comfo II-M, Norton M, Survivair M, A-O M, or Scott-M. Use either of the tests outlined below to assure that the facepiece is properly adjusted. - (1) Positive pressure test. With the exhaust port(s) blocked, the negative pressure of slight inhalation should remain constant for several seconds. - (2) Negative pressure test. With the intake port(s) blocked, the negative pressure slight inhalation should remain constant for several seconds. - b. After a facepiece is adjusted, the test subject shall wear the facepiece for at least 5 minutes before conducting a qualitative test by using either of the methods described below and using the exercise regime described in 5.a., b., c., d. and e. - (1) Isoamvl acetate test. When using organic vapor cartridges, the test subject who can smell the odor should be unable to detect the odor of isoamyl acetate squirted into the air near the most vulnerable portions of the facepiece seal. In a location which is separated from the test area, the test subject shall be instructed to close her/his eyes during the test period. A combination cartridge or canister with organic vapor and high-efficiency filters shall be used when available for the particular mask being tested. The test subject shall be given an opportunity to smell the odor of isoamyl acetate before the test is conducted. - (2) Irritant fume test. When using highefficiency filters, the test subject should be unable to detect the odor of irritant fume (stannic chloride or titanium tetrachloride ventilation smoke tubes) squirted into the air near the most vulnerable portions of the facepiece seal. The test subject shall be instructed to close her/his eyes during the test period. c. The test subject may enter the quantitative testing chamber only if she or he has obtained a satisfactory fit as stated in 4.b. of this Appendix. d. Before the subject enters the test chamber, a reasonably stable challenge agent concentration shall be measured in the test e. Immediately after the subject enters the test chamber, the challenge agent concentration inside the respirator shall be measured to ensure that the peak penetration does not exceed 5 percent for a half-mask and 1 percent for a full facepiece. f. A stable challenge agent concentration shall be obtained prior to the actual start of testing. 1. Respirator restraining straps may not be over-tightened for testing. The straps shall be adjusted by the wearer to give a reasonably comfortable fit typical of normal use. 5. Exercise Regime. Prior to entering the test chamber, the test subject shall be given complete instructions as to her/his part in the test procedures. The test subject shall perform the following exercises, in the order given, for each independent test. a. Normal Breathing (NB). In the normal standing position, without talking, the subject shall breathe normally for at least one b. Deep Breathing (DB). In the normal standing position the subject shall do deep breathing for at least one minute pausing so as not to hyperventilate. - c. Turning head side to side (SS). Standing in place the subject shall slowly turn his/her head from side between the extreme positions to each side. The head shall be held at each extreme position for at least 5 seconds. Perform for at least three complete cycles. - d. Moving head up and down (UD). Standing in place, the subject shall slowly move his/her head up and down between the extreme position straight up and the extreme position straight down. The head shall be held at each extreme position for at least 5 seconds. Perform for at least three complete cycles. - e. Reading (R). The subject shall read out slowly and loud so as to be heard clearly by the test conductor or monitor. The test subject shall read the "rainbow passage" at the end of this section. - f. Grimace (G). The test subject shall grimace, smile, frown, and generally contort the face using the facial muscles. Continue for at least 15 seconds. - g. Bend over and touch toes (B). The test subject shall bend at the waist and touch toes and return to upright position. Repeat for at least 30 seconds. - h. Jogging in place (J). The test subject shall perform jog in place for at least 30 seconds. - i. Normal Breathing (NB). Same as exercise #### Rainbow Passage When the sunlight strikes raindrops in the air,
they act like a prism and form a rainbow. The rainbow is a division of white light into many beautiful colors. These take the shape of a long round arch, with its path high above, and its two ends apparently beyond the horizon. There is, according to legend, a boiling pot of gold at one end. People look, but no one ever finds it. When a man looks for something beyond reach, his friends say he is looking for the pot of gold at the end of the rainbow. 6. The test shall be terminated whenever any single peak penetration exceeds 5 percent for half-masks and 1 percent for full facepieces. The test subject may be refitted and retested. If two the three required tests are terminated, the fit shall be deemed inadequate. (See paragraph 4.h.). #### 7. Calculation of Fit Factors - a. The fit factor determined by the quantitative fit test equals the average concentration inside the respirator. - b. The average test chamber concentration is the arithmetic average of the test chamber concentration at the beginning and of the end of the test. - c. The average peak concentration of the challenge agent inside the respirator shall be the arithmetic average peak concentrations for each of the nine exercises of the test which are computed as the arithmetic average of the peak concentrations found for each breath during the exercise. - d. The average peak concentration for an exercise may be determined graphically if there is not a great variation in the peak concentrations during a single exercise. #### 8. Interpretation of Test Results. The fit factor measured by the quantitative fit testing shall be the lowest of the three protection factors resulting from three independent tests. #### 9. Other Requirements a. The test subject shall not be permitted to wear a half-mask or full facepiece mask if the minimum fit factor of 100 or 1,000, respectively, cannot be obtained. If hair growth or apparel interfere with a satisfactory fit, then they shall be altered or removed so as to eliminate interference and allow a satisfactory fit. If a satisfactory fit is still not attained, the test subject must use a positivepressure respirator such as powered airpurifying respirators, supplied air respirator, or self-contained breathing apparatus. b. The test shall not be conducted if there is any hair growth between the skin and the facepiece sealing surface. c. If a test subject exhibits difficulty in breathing during the tests, she or he shall be referred to a physician trained in respirator diseases or pulmonary medicine to determine whether the test subject can wear a respirator while performing her or his duties. d. The test subject shall be given the opportunity to wear the assigned respirator for one week. If the respirator does not provide a satisfactory fit during actual use, the test subject may request another QNFT which shall be performed immediately. e. A respirator fit factor card shall be issued to the test subject with the following information: - (1) Name - (2) Date of fit test. - (3) Protection factors obtained through each manufacturer, model and approval number of respirator tested. (4) Name and signature of the person that conducted the test. f. Filters used for qualitative or quantitative fit testing shall be replaced weekly, whenever increased breathing resistance is encountered, or when the test agent has altered the integrity of the filter media. Organic vapor cartridges/canisters shall be replaced daily or sooner if there is any indication of breakthrough by the test agent. - 10. In addition, because the sealing of the respirator may be affected, quantitative fit testing shall be repeated immediately when the test subject has a: - (1) Weight change of 20 pounds or more, - (2) Significant facial scarring in the area of the facepiece seal, - (3) Significant dental changes; i.e.; multiple extractions without prothesis, or acquiring dentures, - (4) Reconstructive or cosmetic surgery, or - (5) Any other condition that may interfere with facepiece sealing. - 11. Recordkeeping A summary of all test results shall be maintained in for 3 years. The summary shall include: - (1) Name of test subject - (2) Date of testing. - (3) Name of the test conductor. - (4) Fit factors obtained from every respirator tested (indicate manufacturer, model, size and approval number). ## Appendix D to § 1915.1001—Medical Questionnaires. Mandatory This mandatory appendix contains the medical questionnaires that must be administered to all employees who are exposed to asbestos, tremolite, anthophyllite, actinolite, or a combination of these minerals above the permissible exposure limit (0.1 f/cc), and who will therefore be included in their employer's medical surveillance program. Part 1 of the appendix contains the Initial Medical Questionnaire, which must be obtained for all new hires who will be covered by the medical surveillance requirements. Part 2 includes the abbreviated Periodical Medical Questionnaire, which must be administered to all employees who are provided periodic medical examinations under the medical surveillance provisions of the standard. BILLING CODE 4510-26-P ## Part 1 ## INITIAL MEDICAL QUESTIONNAIRE | 1. | NAME | | |-------------|--------------------------------|---| | 2. | SOCIAL SECURITY # | | | 3. | CLOCK NUMBER | | | 4 . | PRESENT OCCUPATION | | | 5. | PLANT | | | 6. | ADDRESS | | | | A CANADA S | | | · : | (Zip Code) | | | 8. | TELEPHONE NUMBER | | | 9. | INTERVIEWER | | | 10. | DATE | | | | Date of Birth | | | | Sex | 1. Male
2. Female | | 14. | What is your marital status? | | | 15. | Race | 1. White 4. Hispanic | | | | 2. Black 5. Indian | | | | 3. Asian 6. Other | | ⊥6 . | What is the highest grade comp | | | | (For example 12 years is compl | and the first of the second of the first of the second | | <u>occi</u> | UPATIONAL HISTORY | i de la composition de la composition
La composition de la | | 17A. | Have you ever worked full time (30 hours 1, Yes _ 2. No | |-------|--| | | per week or more) for 6 months or more? | | | IF YES TO 17A: | | В. | Have you ever worked for a year or 1. Yes2.No more in any dusty job? 1. Joes Not Apply | | | Specify job/industry Total Years Worked | | : | Was dust exposure: 1. Mild 2. Moderate 3. Severe | | C. | Have you even been exposed to gas or 1. Yes 2. No chemical fumes in your work? Specify job/industry Total Years Worked | | i | Was exposure: 1. Mild 2. Moderate 3. Severe | | / D. | What has been your usual occupation or jobthe one you have worked at the longest? | | | 1. Job occupation | | | 2. Number of years employed in this occupation | | | 3. Position/job title | | (Reco | 4. Business, field or industry | | Have | you ever worked: YES NO | | E. | In a mine?[_] [] | | F. | In a quarry? | | G. | In a foundry? [_] [_] | | H. | In a pottery? | | I. | In a cotton, flax or hemp mill?[_] | | J. | With asbestos? | | 18. | PAST MEDICAL HISTORY | | | | YES | NO | |--------------|--|----------------------|-------| | À. | Do you consider yourself to be in good health? | [] | [] | | | If "NO" state reason | : | | | B., | Have you any defect of vision? | [_] | [] | | | If "YES" state nature of defect | · | • | | C. | Have you any hearing defect? | [] | [] | | | If "YES" state nature of defect | | | | D. | Are you suffering from or have you ever suffered a. Epilepsy (or fits, seizures, convulsions)? | d from:
YES
[] | NO [] | | , | | | | | | b. Rheumatic fever? | [_] | [] | | | c. Kidney disease? | [_] | [_] | | | d. Bladder disease? | [_] | [_] | | | e. Diabetes? | [_] | [1 | | | f. Jaundice? | | [] | | 9. | CHEST COLDS AND CHEST ILLNESSES | | | | 9 A . | If you get a cold, does it <u>usually</u> go to your c (Usually means
more than 1/2 the time) 1. Yes 2. No 3. Don't | | lds | | 0A. | illnesses that have kept you off work, indoors home, or in bed? | | | | В. | 1. Yes 2. No IF YES TO 20A: Did you produce phlegm with any of these chest 1. Yes 2. No 3. Does N | | | | C. | In the last 3 years, how many such illnesses wi (increased) phlegm did you have which lasted a more? | week or | r | | | Number of illnesses No such illnesses | | | | | 1. Yes 2. No | | .go 02 20 | • | |------|---|------|----------------------|-----------------| | 22. | Have you ever had any of the following | ? | | | | | 1A. Attacks of bronchitis? IF YES TO 1A: | 1. | Yes | 2. No | | | B. Was it confirmed by a doctor? | | Yes
Does Not | | | | C. At what age was your first attack? | | Age in You | | | | 2A. Pneumonia (include bronchopneumonia IF YES TO 2A: | a) ? | 1. Yes_ | 2. No_ | | | B. Was it confirmed by a doctor? | | Yes
Does Not | | | | C. At what age did you first have it? | | Age in You | | | | 3A. Hay Fever? IF YES TO 3A: | | Yes | | | | B. Was it confirmed by a doctor? | | Yes
Does Not | | | | C. At what age did it start? | | Age in You | ears
Apply _ | | 23A. | Have you ever had chronic bronchitis? IF YES TO 23A: | 1. | Yes | 2. No | | B. | Do you still have it? | | Yes
Does Not | | | C. | Was it confirmed by a doctor? | 1. | Yes
Does Not | 2. No | | D. | At what age did it start? | | Age in Y
Does Not | | | 24A. | Have you ever had emphysema? IF YES TO 24A: | 1. | Yes | 2. No | | В. | Do you still have it? | | Yes
Does Not | | | c. | Was it confirmed by a doctor? | | Yes
Does Not | | | D. | At what age did it start? | | Age in Y
Does Not | ears | | 25A. | Have you ever had asthma? IF YES TO 25A: | 1. | Yes | 2. No | | | · · | | | | | В. | Do you still have it? | | Yes
Does Not | | |---------------------|---|--------------------------------|--|---------------------------------------| | c. | Was it confirmed by a doctor? | | Yes
Does Not | | | D. | At what age did it start? | | Age in You | | | E. | If you no longer have it, at what age | did | it stop? Age stopp Does Not | | | 26. | Have you ever had: | | | | | A. | Any other chest illness? | 1. | Yes | 2. No | | | If yes, please specify | | | · · · · · · · · · · · · · · · · · · · | | В. | Any chest operations? | 1. | Yes | 2. No | | | If yes, please specify | . | | - Lie | | c. | Any chest injuries? | 1. | Yes | 2. No | | | If yes, please specify | | | | | 27A. | Has a doctor ever told you that you ha | | eart troul | | | В. | | | | | | | | tro | uble in t | he past | | | | 1. | Yes
Does Not | 2. No | | 28 A | Have you ever had treatment for heart | 1.
3.
id h | Yes
Does Not | 2. No
Apply _ | | 28A
B. | Have you ever had treatment for heart 10 years? Has a doctor ever told you that you had pressure? IF YES TO 28A: Have you had any treatment for high bl | 1.
3.
id h | Yes
Does Not
igh blood
Yes | 2. No
Apply _ | | 28A
B. | Have you ever had treatment for heart 10 years? Has a doctor ever told you that you ha pressure? IF YES TO 28A: | 1.
3.
1.
.ood | Yes
Does Not
igh blood
Yes | 2. No Apply _ 2. No 2. No | | 28A
B.
(hype: | Have you ever had treatment for heart 10 years? Has a doctor ever told you that you had pressure? IF YES TO 28A: Have you had any treatment for high bl | 1.
3.
ad h
1.
.ood | Yes Does Not igh blood Yes pressure Yes Does Not | 2. No Apply _ 2. No 2. No | | FAMILY | Y HISTORY | |--------|--| | 31. | Were either of your natural parents ever told by a doctor that they had a chronic lung condition such as: FATHER MOTHER | | | 1. Yes 2. No 3. Don't 1. Yes 2. No 3. Don't know. Chronic bronchitis? | | | Emphysema? | | | Asthma? | | • • • | Lung cancer? | | | Other chest conditions? | | F. | Is parent currently alive? | | G. | Please Specify Age if Living Age if Living Age at Death Age at Death Don't Know Don't Know | | н. | Please specify cause of death | | COUGH | | | 32A. | Do you usually have a cough? (Count cough with first smok
or on first going out of doors. Exclude clearing
of throat.) [If no, skip to question
32C.] | | | 1. Yes 2. No | | 32B. | Do you usually cough as much as 4 to 6 times a day 4 or more days out of the week? 1. Yes 2. No | | C. | | | | Do you usually cough at all during the rest of the day or | | ı | · , E, . | consecutive i | ronths or m | ore during the | e vear? | • | | |-----|--------------|------------------------------|----------------------------|---|--------------------------|-------------|-----| | | | | | 1. Yes | | ₹o: | | | | | | | 3. Does | not apply | | | | ٠ | | . Dais bass mans | | | | - | | | | F. | ror now many | years nave | you had the | cougn?
er of years | | | | | | | | | not apply | | | | • | • , | | | | noc appra | | • | | -: | | (Count pl
f doors. Exc | hlegm with
lude phlegm | phlegm from the first smol
from the nose | ce or on fire | st going | | | | | swallowed | d phlegm.) | (If no, skip | to 33C) | - | • | | | | • . | | 1 Vac | 2. No | • | | | | | • | | I. ies | 2. No | <i>-</i> | | | • | в. | Do you usual day 4 or more | | phlegm like of the week?
1. Yes | | | a | | | c. | Do you usual | ly bring up | phlegm at al. | l on getting | up or | | | | | first thing | in the morn | ing?
1. Yes | 2. No | . ·
o | | | | | | | | | | | | , . | D. | Do you usual the day or a | | phlegm at al. | _ | | | | | • | | | 1. Yes | 2. No | ° | | | | FOLLO | WING:
TO ALL, CHEC | k <u>does not</u> | 3A, B, C, or by APPLY AND SKI like this on b | P TO 34A. | • | | | | | | | ring the year | | | . ' | | · . | | | | 1. Yes
3. Does | not apply | <u> </u> | | | | ਬ | For how many | vears have | you had trou | ble with phlo | eam? | | | | | TOL NOW Many | years mare | | er of years | | | | | : . | * * * | | | not apply | | | | | | | | | | | | | | EPISO | DES OF COUGH | AND PHLEGM | | | | | | | 34A. | phleqm lasti | ng for 3 we
s who usual | episodes of
eks or more e
ly have cough
1. Yes | ach year?
and/or phle | gm) | đ | | | | If YES TO 34
For how long | | ad at least 1 | such episod | e per yeaı | r? | | | | | | • | | | | | | Number of years Does not apply | |-------|---| | WHEEZ | ING | | 35A. | Does your chest ever sound wheezy or whistling 1. When you have a cold? 1. Yes 2. No | | | 2. Occasionally apart from colds? 1. Yes 2. No _ | | • | 3. Most days or nights? 1. Yes 2. No _ | | в. | IF YES TO 1, 2, or 3 in 35A For how many years has this been present? Number of years Does not apply | | 36A. | Have you ever had an attack of wheezing that has made you feel short of breath? | | в. | 1. Yes 2. No IF YES TO 36A How old were you when you had your first such attack? Age in years Does not apply | | C. | Have you had 2 or more such episodes? 1. Yes 2. No 3. Does not apply | | D. | Have you ever required medicine or medicine for the (se) attack(s)? | | | 1. Yes 2. No
3.Does not apply | | BREAT | HLESSNESS | | 37. | If disabled from walking by any condition other than heart or lung disease, pleasedescribe and proceed to question 39A. | | | Nature of condition(s) | | 38A. | Are you troubled by shortness of breath when hurrying on the level or walking up a slight hill? 1. Yes 2. No | | | IF YES TO 38A | | В. | Do you have to walk slower than people of your age on the level because of breathlessness? 1. Yes 2. No | | | | | | | 3. Does not apply | |-------|---|--| | C. | Do you ever have to stop for own pace on the level? | breath when walking at your | | | | 1. Yes 2. No 3. Does not apply | | D. | Do you ever have to stop for yards (or after a few min | breath after walking about 100 nutes) on the level? 1. Yes 2. No 3. Does not apply | | E. | Are you too breathless to led
dressing or climbing one flight | ave the house or breathless on ght of stairs? 1. Yes 2. No 3. Does not apply | | TOBAC | CO SMOKING | | | 39A. | Have you ever smoked cigaret packs of cigarettes or 12 oz less than 1 cigarette a day | . of tobacco in a lifetime or for 1 year.) | | | IF YES TO 39A | 1. Yes 2. No | | В. | Do you now smoke cigarettes | (as of one month age)? 1. Yes 2. No 3. Does not apply | | c. | | rst started regular cigarette Age in years Does not apply | | D. | If you have stopped smoking were you when you stopped? | Age stopped Check if still smoking Does not apply | | E. | How many cigarettes do you s | moke per day now? Cigarettes per day Does not apply | | F. | On the average of the entire cigarettes did you smoke per | | | 5 G. | Do or did you inhale the cig | arette smoke? | 1. Yes__ (Yes means more than 1 cigar a week for a year) IF YES TO 41A #### FOR PERSONS WHO HAVE EVER SMOKED CIGARS How old were you when you started Age smoking cigars regularly? | Signa | ture | Date | |-------|---|---| | . • | | 2. Not at all 3. Slightly 4. Moderately 5. Deeply | | E. | Do or did you inhale the cigar smoke? | 1. Never smoked _ | | D. | How many cigars are you smoking per we now? | ek Cigars per week _
Check if not
smoking cigars
currently _ | | | smoke per
week? | | | C. | On the average over the entire time you smoked cigars, how many cigars did you | | | | If you have stopped smoking cigars
completely, how old were you when
you stopped. | Age stopped
Check if still
smoking cigars _
Does not apply _ | # Part 2 PERIODIC MEDICAL QUESTIONNAIRE | 1. | NAME | | | |------|---|------------------------|-----------------------------| | 2. | SOCIAL SECURITY # | | | | 3. | CLOCK NUMBER | · | | | 4. | PRESENT OCCUPATION | | | | 5. | PLANT | | | | 6. | ADDRESS | | | | 7. | | | | | | | (Zip Code) | | | 8. | TELEPHONE NUMBER | | | | 9. | INTERVIEWER | | | | 10. | DATE | | | | 11. | | Single | 4. Separated/
Divorced _ | | 12. | OCCUPATIONAL HISTORY | | | | 12A. | In the past year, did you work | 1. Yes | 2. No | | | full time (30 hours per week or more) for 6 months or more? | | | | | IF YES TO 12A: | | | | 12B. | In the past year, did you work in a dusty job? | 1. Yes
3. Does Not | 2. No | | 12C. | Was dust exposure: | 1. Mild
3. Severe _ | 2. Moderate | | f . | | | | | 12D. | In the past year, were you exposed to gas or chemical fumes in your work? | 1. Yes | 2. No | | 15C. | In the past year, how many such illnesses with (increased) phlegm did you have which lasted a week | Number of
No such | | |------|--|----------------------|----------| | | or more? | | . | ## 16. RESPIRATORY SYSTEM In the past year have you had: | | Yes or No | Further Comment on Po | sitive | |--|--|--|---------| | | | Answers | i · | | Asthma | | | ; | | Bronchitis | | | | | and the second | `. | | | | Hay Fever | | | | | Other Allergies | | | | | • | | to a second | | | | 17 17 - | Thombson Commont on De | 4 | | | Yes of No | Further Comment on Po |)BICIVE | | • | | The state of s | | | Pneumonia | | | | | Tuberculosis | | | | | Tuberculosis | • | | ** * | | Chest Surgery | · | en e | | | * $*$ $*$ $*$ | | | • • • | | Other Lung Problems | | | | | Heart Disease | ٤ | | | | | | $\mathbf{r} = \mathbf{r} \cdot \mathbf{r}$ | | | | | | | | Do you have: | | | • | | • | Yes or No | Further Comment on Por | sitive | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Answers | | | _ | | | | | Frequent colds | | | | | Chronic cough | | | | | _ | | | | | Shortness of breath | | | | | when walking or climbing one flight | | | | | or stairs | · | | | | | | | | | | | | | | in the second of | | | | | Do you: | | | | | | | | | | Wheeze | · · | | | | Cough up phlagm | | | | | Cough up phlegm | · • · · · · · · · · · · · · · · · · · · | | | | Smoke cigarettes | Packs per day How many years | , | |------------------|------------------------------|---| | | | | | Date | Signature | | BILLING CODE 4510-28-C #### Appendix E to § 1915.1001-Interpretation and Classification of **Chest Roentgenograms. Mandatory** (a) Chest roentgenograms shall be interpreted and classified in accordance with a professionally accepted classification system and recorded on a Roentgenographic Interpretation Form. *Form CSD/NIOSH (M) (b) Roentgenograms shall be interpreted and classified only by a B-reader, a board eligible/certified radiologist, or an experienced physician with known expertise in pneumoconioses. (c) All interpreters, whenever interpreting chest roentgenograms made under this section, shall have immediately available for reference a complete set of the ILO-U/C International Classification of Radiographs for Pneumoconioses, 1980. #### Appendix F to § 1915.1001—Work **Practices and Engineering Controls for** Class I Asbestos Operations Non-Mandatory This is a non-mandatory appendix to the asbestos standards for construction and for shipyards. It describes criteria and procedures for erecting and using negative pressure enclosures for Class I Asbestos Work, when NPEs are used as an allowable control method to comply with paragraph (g)(5) (i) of this section. Many small and variable details are involved in the erection of a negative pressure enclosure. OSHA and most participants in the rulemaking agreed that only the major, more performance oriented criteria should be made mandatory. These criteria are set out in paragraph (g) of this section. In addition, this appendix includes these mandatory specifications and procedures in its guidelines in order to make this appendix coherent and helpful. The mandatory nature of the criteria which appear in the regulatory text is not changed because they are included in this "non-mandatory" appendix. Similarly, the additional criteria and procedures included as guidelines in the appendix, do not become mandatory because mandatory criteria are also included in these comprehensive guidelines. In addition, none of the criteria, both mandatory and recommended, are meant to specify or imply the need for use of patented or licensed methods or equipment. Recommended specifications included in this attachment should not discourage the use of creative alternatives which can be shown to reliably achieve the objectives of negative-pressure enclosures. Requirements included in this appendix, cover general provisions to be followed in all asbestos jobs, provisions which must be followed for all Class I asbestos jobs, and provisions governing the construction and testing of negative pressure enclosures. The first category includes the requirement for use of wet methods, HEPA vacuums, and immediate bagging of waste; Class I work must conform to the following provisions: - oversight by competent person - · use of critical barriers over all openings to work area - · isolation of HVAC systems - · use of impermeable dropcloths and coverage of all objects within regulated areas In addition, more specific
requirements for NPEs include: - maintenance of -0.02 inches water gauge within enclosure - manometric measurements - air movement away from employees performing removal work - · smoke testing or equivalent for detection of leaks and air direction - deactivation of electrical circuits, if not provided with ground-fault circuit interrupters. #### Planning the Project The standard requires that an exposure assessment be conducted before the asbestos job is begun § 1915.1001(f)(1). Information needed for that assessment, includes data relating to prior similar jobs, as applied to the specific variables of the current job. The information needed to conduct the assessment will be useful in planning the project, and in complying with any reporting requirements under this standard, when significant changes are being made to a control system listed in the standard, [see paragraph (k) of this section], as well as those of USEPA (40 CFR Part 61, subpart M). Thus, although the standard does not explicitly require the preparation of a written asbestos removal plan, the usual constituents of such a plan, i.e., a description of the enclosure, the equipment, and the procedures to be used throughout the project, must be determined before the enclosure can be erected. The following information should be included in the planning of the system: A physical description of the work area; A description of the approximate amount of material to be removed; A schedule for turning off and sealing existing ventilation systems; Personnel hygiene procedures; A description of personal protective equipment and clothing to worn by employees; A description of the local exhaust ventilation systems to be used and how they are to be tested: A description of work practices to be observed by employees; An air monitoring plan; A description of the method to be used to transport waste material; and The location of the dump site. Materials and Equipment Necessary for Asbestos Removal Although individual asbestos removal projects vary in terms of the equipment required to accomplish the removal of the materials, some equipment and materials are common to most asbestos removal - operations. Plastic sheeting used to protect horizontal surfaces, seal HVAC openings or to seal vertical openings and ceilings should have a minimum thickness of 6 mils. Tape or other adhesive used to attach plastic sheeting should be of sufficient adhesive strength to support the weight of the material plus all stresses encountered during the entire duration of the project without becoming detached from the surface. Other equipment and materials which should be available at the beginning of each project are: -HEPA Filtered Vacuum is essential for cleaning the work area after the asbestos has been removed. It should have a long hose capable of reaching out-of-the-way places, such as areas above ceiling tiles, behind pipes, etc. -Portable air ventilation systems installed to provide the negative air pressure and air removal from the enclosure must be equipped with a HEPA filter. The number and capacity of units required to ventilate an enclosure depend on the size of the area to be ventilated. The filters for these systems should be designed in such a manner that they can be replaced when the air flow volume is reduced by the build-up of dust in the filtration material. Pressure monitoring devices with alarms and strip chart recorders attached to each system to indicate the pressure differential and the loss due to dust buildup on the filter are recommended. -Water sprayers should be used to keep the asbestos material as saturated as possible during removal; the sprayers will provide a fine mist that minimizes the impact of the spray on the material. -Water used to saturate the asbestos containing material can be amended by adding at least 15 milliliters (1/4 ounce) of wetting agent in 1 liter (1 pint) of water. An example of a wetting agent is a 50/50 mixture of polyoxyethylene ether and polyoxyethylene polyglycol ester. -Backup power supplies are recommended, especially for ventilation systems. Shower and bath water should be with mixed hot and cold water faucets. Water that has been used to clean personnel or equipment should either be filtered or be collected and discarded as asbestos waste. Soap and shampoo should be provided to aid in removing dust from the workers' skin and hair. —See paragraphs (h) and (i) of this section for appropriate respiratory protection and protective clothing. —See paragraph (k) of this section for required signs and labels. #### Preparing the Work Area Disabling HVAC Systems: The power to the heating, ventilation, and air conditioning systems that service the restricted area must be deactivated and locked off. All ducts, grills, access ports, windows and vents must be sealed off with two layers of plastic to prevent entrainment of contaminated air. Operating HVAC Systems in the Restricted Area: If components of a HVAC system located in the restricted area are connected to a system that will service another zone during the project, the portion of the duct in the restricted area must be sealed and pressurized. Necessary precautions include caulking the duct joints, covering all cracks and openings with two layers of sheeting, and pressurizing the duct throughout the duration of the project by restricting the return air flow. The power to the fan supplying the positive pressure should be locked "on" to prevent pressure loss. Sealing Elevators: If an elevator shaft is located in the restricted area, it should be either shut down or isolated by sealing with two layers of plastic sheeting. The sheeting should provide enough slack to accommodate the pressure changes in the shaft without breaking the air-tight seal. Removing Mobile Objects: All movable objects should be cleaned and removed from the work area before an enclosure is constructed unless moving the objects creates a hazard. Mobile objects will be assumed to be contaminated and should be either cleaned with amended water and a HEPA vacuum and then removed from the area or wrapped and then disposed of as hazardous waste. Cleaning and Sealing Surfaces: After cleaning with water and a HEPA vacuum, surfaces of stationary objects should be covered with two layers of plastic sheeting. The sheeting should be secured with duct tape or an equivalent method to provide a tight seal around the object. Bagging Waste: In addition to the requirement for immediate bagging of waste for disposal, it is further recommended that the waste material be double-bagged and sealed in plastic bags designed for asbestos disposal. The bags should be stored in a waste storage area that can be controlled by the workers conducting the removal. Filters removed from air handling units and rubbish removed from the area are to be bagged and handled as hazardous waste. #### Constructing the Enclosure The enclosure should be constructed to provide an air-tight seal around ducts and openings into existing ventilation systems and around penetrations for electrical conduits, telephone wires, water lines, drain pipes, etc. Enclosures should be both airtight and watertight except for those openings designed to provide entry and/or air flow control. Size: An enclosure should be the minimum volume to encompass all of the working surfaces yet allow unencumbered movement by the worker(s), provide unrestricted air flow past the worker(s), and ensure walking surfaces can be kept free of tripping hazards. Shape: The enclosure may be any shape that optimizes the flow of ventilation air past the worker(s). Structural Integrity: The walls, ceilings and floors must be supported in such a manner that portions of the enclosure will not fall down during normal use. Openings: It is not necessary that the structure be airtight; openings may be designed to direct air flow. Such openings should be located at a distance from active removal operations. They should be designed to draw air into the enclosure under all anticipated circumstances. In the event that negative pressure is lost, they should be fitted with either HEPA filters to trap dust or automatic trap doors that prevent dust from escaping the enclosure. Openings for exits should be controlled by an airlock or a vestibule. Barrier Supports: Frames should be constructed to support all unsupported spans of sheeting. Sheeting: Walls, barriers, ceilings, and floors should be lined with two layers of plastic sheeting having a thickness of at least 6 mil. Seams: Seams in the sheeting material should be minimized to reduce the possibilities of accidental rips and tears in the adhesive or connections. All seams in the sheeting should overlap, be staggered and not be located at corners or wall-to-floor joints. Areas Within an Enclosure: Each enclosure consists of a work area, a decontamination area, and waste storage area. The work area where the asbestos removal operations occur should be separated from both the waste storage area and the contamination control area by physical curtains, doors, and/or airflow patterns that force any airborne contamination back into the work area. See paragraph (j) of § 1915.1001 for requirements for hygiene facilities. During egress from the work area, each worker should step into the equipment room, clean tools and equipment, and remove gross contamination from clothing by wet cleaning and HEPA vacuuming. Before entering the shower area, foot coverings, head coverings, hand coverings, and coveralls are removed and placed in impervious bags for disposal or cleaning. Airline connections from airline respirators with HEPA disconnects and power cables from powered air-purifying respirators (PAPRs) will be disconnected just prior to entering the shower room. Establishing Negative Pressure Within the Enclosure Negative Pressure: Air is to be drawn into the enclosure under all anticipated conditions and exhausted through a HEPA filter for 24 hours a day during the entire
duration of the project. Air Flow Tests: Air flow patterns will be checked before removal operations begin, at least once per operating shift and any time there is a question regarding the integrity of the enclosure. The primary test for air flow is to trace air currents with smoke tubes or other visual methods. Flow checks are made at each opening and at each doorway to demonstrate that air is being drawn into the enclosure and at each worker's position to show that air is being drawn away from the breathing zone. Monitoring Pressure Within the Enclosure: After the initial air flow patterns have been checked, the static pressure must be monitored within the enclosure. Monitoring may be made using manometers, pressure gauges, or combinations of these devices. It is recommended that they be attached to alarms and strip chart recorders at points identified by the design engineer. Corrective Actions: If the manometers or pressure gauges demonstrate a reduction in pressure differential below the required level, work should cease and the reason for the change investigated and appropriate changes made. The air flow patterns should be retested before work begins again. Pressure Differential: The design parameters for static pressure differentials between the inside and outside of enclosures typically range from 0.02 to 0.10 inches of water gauge, depending on conditions. All zones inside the enclosure must have less pressure than the ambient pressure outside of the enclosure (-0.02 inches water gauge differential). Design specifications for the differential vary according to the size, configuration, and shape of the enclosure as well as ambient and mechanical air pressure conditions around the enclosure. Air Flow Patterns: The flow of air past each worker shall be enhanced by positioning the intakes and exhaust ports to remove contaminated air from the worker's breathing zone, by positioning HEPA vacuum cleaners to draw air from the worker's breathing zone, by forcing relatively uncontaminated air past the worker toward an exhaust port, or by using a combination of methods to reduce the worker's exposure. Air Handling Unit Exhaust: The exhaust plume from air handling units should be located away from adjacent personnel and intakes for HVAC systems. Air Flow Volume: The air flow volume (cubic meters per minute) exhausted (removed) from the workplace must exceed the amount of makeup air supplied to the enclosure. The rate of air exhausted from the enclosure should be designed to maintain a negative pressure in the enclosure and air movement past each worker. The volume of air flow removed from the enclosure should replace the volume of the container at every 5 to 15 minutes. Air flow volume will need to be relatively high for large enclosures, enclosures with awkward shapes, enclosures with multiple openings, and operations employing several workers in the enclosure. Air Flow Velocity: At each opening, the air flow velocity must visibly "drag" air into the enclosure. The velocity of air flow within the enclosure must be adequate to remove airborne contamination from each worker's breathing zone without disturbing the asbestos-containing material on surfaces. Airlocks: Airlocks are mechanisms on doors and curtains that control the air flow patterns in the doorways. If air flow occurs, the patterns through doorways must be such that the air flows toward the inside of the enclosure. Sometimes vestibules, double doors, or double curtains are used to prevent air movement through the doorways. To use a vestibule, a worker enters a chamber by opening the door or curtain and then closing the entry before opening the exit door or curtain. Airlocks should be located between the equipment room and shower room, between the shower room and the clean room, and between the waste storage area and the outside of the enclosure. The air flow between adjacent rooms must be checked using smoke tubes or other visual tests to ensure the flow patterns draw air toward the work area without producing eddies. #### Monitoring for Airborne Concentrations In addition to the breathing zone samples taken as outlined in paragraph (f) of § 1915.1001, samples of air should be taken to demonstrate the integrity of the enclosure, the cleanliness of the clean room and shower area, and the effectiveness of the HEPA filter. If the clean room is shown to be contaminated, the room must be relocated to an uncontaminated area. Samples taken near the exhaust of portable ventilation systems must be done with care. #### General Work Practices Preventing dust dispersion is the primary means of controlling the spread of asbestos within the enclosure. Whenever practical, the point of removal should be isolated, enclosed, covered, or shielded from the workers in the area. Waste asbestos containing materials must be bagged during or immediately after removal; the material must remain saturated until the waste container is sealed. Waste material with sharp points or corners must be placed in hard air-tight containers rather than bags. Whenever possible, large components should be sealed in plastic sheeting and removed intact. Bags or containers of waste will be moved to the waste holding area, washed, and wrapped in a bag with the appropriate labels. #### Cleaning the Work Area Surfaces within the work area should be kept free of visible dust and debris to the extent feasible. Whenever visible dust appears on surfaces, the surfaces within the enclosure must be cleaned by wiping with a wet sponge, brush, or cloth and then vacuumed with a HEPA vacuum. All surfaces within the enclosure should be cleaned before the exhaust ventilation system is deactivated and the enclosure is disassembled. An approved encapsulate may be sprayed onto areas after the visible dust has been removed. #### Appendix G to § 1915.1001 [Reserved] #### Appendix H to § 1915.1001—Substance Technical Information for Asbestos. Non-Mandatory #### I. Substance Identification A. Substance: "Asbestos" is the name of a class of magnesium-silicate minerals that occur in fibrous form. Minerals that are included in this group are chrysotile, crocidolite, amosite, anthophyllite asbestos, tremolite asbestos, and actinolite asbestos. B. Asbestos is and was used in the manufacture of heat-resistant clothing, automotive brake and clutch linings, and a variety of building materials including floor tiles, roofing felts, ceiling tiles, asbestoscement pipe and sheet, and fire-resistant drywall. Asbestos is also present in pipe and boiler insulation materials and in sprayed-on materials located on beams, in crawlspaces, and between walls. C. The potential for an asbestos-containing product to release breathable fibers depends largely on its degree of friability. Friable means that the material can be crumbled with hand pressure and is therefore likely to emit fibers. The fibrous fluffy sprayed-on materials used for fireproofing, insulation, or sound proofing are considered to be friable, and they readily release airborne fibers if disturbed. Materials such as vinyl-asbestos floor tile or roofing felt are considered nonfriable if intact and generally do not emit airborne fibers unless subjected to sanding, sawing and other aggressive operations. Asbestos—cement pipe or sheet can emit airborne fibers if the materials are cut or sawed, or if they are broken. D. Permissible exposure: Exposure to airborne asbestos fibers may not exceed 0.1 fibers per cubic centimeter of air (0.1 f/cc) averaged over the 8-hour workday, and 1 fiber per cubic centimeter of air (1.0 f/cc) averaged over a 30 minute work period. #### II. Health Hazard Data A. Asbestos can cause disabling respiratory disease and various types of cancers if the fibers are inhaled. Inhaling or ingesting fibers from contaminated clothing or skin can also result in these diseases. The symptoms of these diseases generally do not appear for 20 or more years after initial exposure. B. Exposure to asbestos has been shown to cause lung cancer, mesothelioma, and cancer of the stomach and colon. Mesothelioma is a rare cancer of the thin membrane lining of the chest and abdomen. Symptoms of mesothelioma include shortness of breath, pain in the walls of the chest, and/or abdominal pain. #### III. Respirators and Protective Clothing A. Respirators: You are required to wear a respirator when performing tasks that result in asbestos exposure that exceeds the permissible exposure limit (PEL) of 0.1 f/cc and when performing certain designated operations. Air-purifying respirators equipped with a high-efficiency particulate air (HEPA) filter can be used where airborne asbestos fiber concentrations do not exceed 1.0 f/cc; otherwise, more protective respirators such as air-supplied, positive- pressure, full facepiece respirators must be used. Disposable respirators or dust masks are not permitted to be used for asbestos work. For effective protection, respirators must fit your face and head snugly. Your employer is required to conduct fit test when you are first assigned a respirator and every 6 months thereafter. Respirators should not be loosened or removed in work situations where their use is required. B. Protective Clothing: You are required to wear protective clothing in work areas where asbestos fiber concentrations exceed the permissible exposure limit (PEL) of 0.1 f/cc. #### IV. Disposal Procedures and Clean-up - A. Wastes that are generated by processes where asbestos is present include: - 1. Empty asbestos shipping containers. - 2. Process wastes such as cuttings, trimmings, or reject materials. - Housekeeping waste from wet-sweeping or HEPA-vacuuming. - 4. Asbestos fireproofing or insulating material that is removed from buildings. - 5. Asbestos-containing building products removed during building renovation or demolition. - 6. Contaminated disposable protective clothing. - B. Empty shipping bags can be flattened under exhaust hoods and packed into airtight containers for
disposal. Empty shipping drums are difficult to clean and should be sealed. - C. Vacuum bags or disposable paper filters should not be cleaned, but should be sprayed with a fine water mist and placed into a labeled waste container. - D. Process waste and housekeeping waste should be wetted with water or a mixture of water and surfactant prior to packaging in disposable containers. - E. Asbestos-containing material that if removed from buildings must be disposed of in leak-tight 6-mil plastic bags, plastic-lined cardboard containers, or plastic-lined metal containers. These wastes, which are removed while wet, should be sealed in containers before they dry out to minimize the release of asbestos fibers during handling. #### V. Access to Information A. Each year, your employer is required to inform you of the information contained in this standard and appendices for asbestos. In addition, your employer must instruct you in the proper work practices for handling asbestos-containing materials, and the correct use of protective equipment. B. Your employer is required to determine whether you are being exposed to asbestos. Your employer must treat exposure to thermal system insulation and sprayed-on and trowled-on surfacing material as asbestos exposure, unless results of laboratory analysis show that the material does not contain asbestos. You or your representative has the right to observe employee measurements and to record the results obtained. Your employer is required to inform you of your exposure, and, if you are exposed above the permissible exposure limit, he or she is required to inform you of the actions that are being taken to reduce your exposure to within the permissible C. Your employer is required to keep records of your exposures and medical examinations. These exposure records must be kept for at least thirty (30) years. Medical records must be kept for the period of your employment plus thirty (30) years. D. Your employer is required to release your exposure and medical records to your physician or designated representative upon your written request. #### Appendix I to § 1915.1001—Medical Surveillance Guidelines for Asbestos, Non-Mandatory I. Route of Entry Inhalation, ingestion. II. Toxicology Clinical evidence of the adverse effects associated with exposure to asbestos is present in the form of several wellconducted epidemiological studies of occupationally exposed workers, family contacts of workers, and persons living near asbestos mines. These studies have shown a definite association between exposure to asbestos and an increased incidence of lung cancer, pleural and peritoneal mesothelioma, gastrointestinal cancer, and asbestosis. The latter is a disabling fibrotic lung disease that is caused only by exposure to asbestos. Exposure to asbestos has also been associated with an increased incidence of esophageal, kidney, laryngeal, pharyngeal, and buccal cavity cancers. As with other known chronic occupational diseases, disease associated with asbestos generally appears about 20 years following the first occurrence of exposure: There are no known acute effects associated with exposure to asbestos. Epidemiological studies indicate that the risk of lung cancer among exposed workers who smoke cigarettes is greatly increased over the risk of lung cancer among non-exposed smokers or exposed nonsmokers. These studies suggest that cessation of smoking will reduce the risk of lung cancer for a person exposed to asbestos but will not reduce it to the same level of risk as that existing for an exposed worker who has never smoked. III. Signs and Symptoms of Exposure Related Disease The signs and symptoms of lung cancer or gastrointestinal cancer induced by exposure to asbestos are not unique, except that a chest X-ray of an exposed patient with lung cancer may show pleural plaques, pleural calcification, or pleural fibrosis. Symptoms characteristic of mesothelioma include shortness of breath, pain in the walls of the chest, or abdominal pain. Mesothelioma has a much longer latency period compared with lung cancer (40 years versus 15–20 years), and mesothelioma is therefore more likely to be found among workers who were first exposed to asbestos at an early age. Mesothelioma is always fatal. Asbestosis is pulmonary fibrosis caused by the accumulation of asbestos fibers in the lungs. Symptoms include shortness of breath, coughing, fatigue, and vague feelings of sickness. When the fibrosis worsens, shortness of breath occurs even at rest. The diagnosis of asbestosis is based on a history of exposure to asbestos, the presence of characteristics radiologic changes, endinspiratory crackles (rales), and other clinical features of fibrosing lung disease. Pleural plaques and thickening are observed on X-rays taken during the early sates of the disease. Asbestosis often a progressive disease even in the absence of continued exposure, although this appears to be a highly individualized characteristic. In severe cases, death may be caused by respiratory or cardiac failure. IV. Surveillance and Preventive Considerations As noted above, exposure to asbestos have been linked to an increased risk of lung cancer, mesothelioma, gastrointestinal cancer, and asbestosis among occupationally exposed workers. Adequate screening tests to determine an employee's potential for developing serious chronic diseases, such as a cancer, from exposure to asbestos do not presently exist. However, some tests, particularly chest X-rays and pulmonary function tests, may indicate that an employee has been overexposed to asbestos increasing his or her risk of developing exposure related chronic diseases. It is important for the physician to become familiar with the operating conditions in which occupational exposure to asbestos is likely to occur. This is particularly important in evaluating medical and work histories and in conducting physical examinations. When an active employee has been identified as having been overexposed to asbestos measures taken by the employer to eliminate or mitigate further exposure should also lower the risk of serious long-term consequences. The employer is required to institute a medical surveillance program for all employees who are or will be exposed to asbestos at or above the permissible exposure limits (0.1 fiber per cubic centimeter of air) for 30 or more days per year and for all employees who are assigned to wear a negative-pressure respirator. All examinations and procedures must be performed by or under the supervision of licensed physician at a reasonable time and place, and at no cost to the employee. Although broad latitude is given to the physician in prescribing specific tests to be included in the medical surveillance program, OSHA requires inclusion of the following elements in the routine examination, (i) Medical and work histories with special emphasis directed to symptoms of the respiratory system, cardiovascular system, and digestive tract. (ii) Completion of the respiratory disease questionnaire contained in Appendix D to this section. (iii) A physical examination including a chest roentgenogram and pulmonary function test that include measurement of the employee's forced vital capacity (FYC) and forced expiratory volume at one second (FEV.). (iv) Any laboratory or other test that the examining physician deems by sound medical practice to be necessary. The employer is required to make the prescribed tests available at least annually to those employees covered; more often than specified if recommended by the examining physician; and upon termination of employment. The employer is required to provide the physician with the following information: A copy of this standard and appendices; a description of the employee's duties as they relate to asbestos exposure; the employee's representative level of exposure to asbestos; a description of any personal protective and respiratory equipment used; and information from previous medical examinations of the affected employee that is not otherwise available to the physician. Making this information available to the physician will aid in the evaluation of the employee's health in relation to assigned duties and fitness to wear personal protective equipment, if required. The employer is required to obtain a written opinion from the examining physician containing the results of the medical examination; the physician's opinion as to whether the employee has any detected medical conditions that would place the employee at an increased risk of exposure-related disease; any recommended limitations on the employee or on the use of personal protective equipment; and a statement that the employee has been informed by the physician of the results of the medical examination and of any medical conditions related to asbestos exposure that require further explanation or treatment. This written opinion must not reveal specific findings or diagnoses unrelated to exposure to asbestos, and a copy of the opinion must be provided to the affected employee. #### Appendix J to § 1915.1001—Smoking Cessation Program Information for Asbestos—Non-Mandatory The following organizations provide smoking cessation information. 1. The National Cancer Institute operates a toll-free Cancer Information Service (CIS) with trained personnel to help you. Call 1—800—4—CANCER* to reach the CIS office serving your area, or write: Office of Cancer Communications, National Cancer Institute, National Institutes of Health, Building 31, Room 10A24, Bethesda, Maryland 20892. 2. American Cancer Society, 3340 Peachtree Road, N.E., Atlanta, Georgia 30026, (404) 320–3333. The American Cencer Society (ACS) is a voluntary organization composed of 58 divisions and 3,100 local units. Through "The Great American Smokeout" in November, the annual Cancer Crusade in April, and numerous educational materials, ACS helps people learn about the health hazards of smoking and become successful ex-smokers. 3. American
Heart Association, 7320 Greenville Avenue, Dallas, Texas 75231, (214) 750-5300. The American Heart Association (AHA) is a voluntary organization with 130,000 members (physicians, scientists, and laypersons) in 55 state and regional groups. AHA produces a variety of publications and audiovisual materials about the effects of smoking on the heart. AHA also has developed a guidebook for incorporating a weight-control component into smoking cessation programs. 4. American Lung Association, 1740 Broadway, New York, New York 10019, (212) 245-8000. A voluntary organization of 7,500 members (physicians, nurses, and laypersons), the American Lung Association (ALA) conducted numerous public information programs about the health effects of smoking. ALA has 59 state and 85 local units. The organization actively supports legislation and information campaigns for non-smokers' rights and provides help for smokers who want to quit, for example, through "Freedom From Smoking," a self-help smoking cessation 5. Office on Smoking and Health, U.S. Department of Health and Human Services 5600 Fishers Lane, Park Building, Room 110, Rockville, Maryland 20857. The Office on Smoking and Health (OSHA) is the Department of Health and Human Services' lead agency in smoking control. OSHA has sponsored distribution of publications on smoking-related topics, such as free flyers on relapse after initial quitting, helping a friend or family member quit smoking, the health hazards of smoking, and the effects of parental smoking on teenagers. *In Hawaii, on Oahu call 524-1234 (call collect from neighboring islands), Spanish-speaking staff members are available during daytime hours to callers from the following areas: California, Florida, Georgia, Illinois, New Jersey (area code 201), New York, and Texas. Consult your local telephone directory for listings of local chapters. #### Appendix K to § 1915.1001—Polarized Light Microscopy of Asbestos-Non-Mandatory) Method number: ID-191 Matrix: Bulk Collection Procedure Collect approximately 1 to 2 grams of each type of material and place into separate 20 mL scintillation vials. #### **Analytical Procedure** A portion of each separate phase is analyzed by gross examination, phase-polar examination, and central stop dispersion microscopy. Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources may be substituted. #### 1. Introduction This method describes the collection and analysis of asbestos bulk materials by light microscopy techniques including phasepolar illumination and central-stop dispersion microscopy. Some terms unique to asbestos analysis are defined below: Amphibole: A family of minerals whose crystals are formed by long, thin units which have two thin ribbons of double chain silicate with a brucite ribbon in between. The shape of each unit is similar to an "I beam". Minerals important in asbestos analysis include cummingtonite-grunerite, crocidolite, tremolite- actinolite and anthophyllite. Asbestos: A term for naturally occurring fibrous minerals. Asbestos includes chrysotile, cummingtonite-grunerite asbestos (amosite), anthophyllite asbestos, tremolite asbestos, crocidolite, actinolite asbestos and any of these minerals which have been chemically treated or altered. The precise chemical formulation of each species varies with the location from which it was mined. Nominal compositions are listed: $Chrysotile.....Mg_3Si_2O_5(OH)_4$ Crocidolite (Riebeckite asbestos)Na₂Fe₃²⁺Fe₂³⁺Si₈O₂₂(OH)₂ Cummingtonite-Grunerite asbestos (Amosite).....(Mg,Fe)7Si8O22(OH)2 Tremolite-Actinolite asbestos Anthophyllite asbestos ... (Mg,Fe)7Si8O22(OH)2 Asbestos Fiber: A fiber of asbestos meeting the criteria for a fiber. (See section 3.5.) Aspect Ratio: The ratio of the length of a fiber to its diameter usually defined as "length : width", e.g. 3:1. Brucite: A sheet mineral with the composition Mg(OH)2. Central Stop Dispersion Staining (microscope): This is a dark field microscope technique that images particles using only light refracted by the particle, excluding light that travels through the particle unrefracted. This is usually accomplished with a McCrone objective or other arrangement which places a circular stop with apparent aperture equal to the objective aperture in the back focal plane of the microscope. Cleavage Fragments: Mineral particles formed by the comminution of minerals, especially those characterized by relatively parallel sides and moderate aspect ratio. Differential Counting: The term applied to the practice of excluding certain kinds of fibers from a phase contrast asbestos count because they are not asbestos. Fiber: A particle longer than or equal to 5 um with a length to width ratio greater than or equal to 3:1. This may include cleavage fragments. (see section 3.5 of this appendix). Phase Contrast: Contrast obtained in the microscope by causing light scattered by small particles to destructively interfere with unscattered light, thereby enhancing the visibility of very small particles and particles with very low intrinsic contrast. Phase Contrast Microscope: A microscope configured with a phase mask pair to create phase contrast. The technique which uses this is called Phase Contrast Microscopy Phase-Polar Analysis: This is the use of polarized light in a phase contrast microscope. It is used to see the same size fibers that are visible in air filter analysis. Although fibers finer than 1 µm are visible, analysis of these is inferred from analysis of larger bundles that are usually present. Phase-Polar Microscope: The phase-polar microscope is a phase contrast microscope which has an analyzer, a polarizer, a first order red plate and a rotating phase condenser all in place so that the polarized light image is enhanced by phase contrast. Sealing Encapsulant: This is a product which can be applied, preferably by spraying, onto an asbestos surface which will seal the surface so that fibers cannot be released. Serpentine: A mineral family consisting of minerals with the general composition Mg₃(Si2O₅(OH)₄ having the magnesium in brucite layer over a silicate layer. Minerals important in asbestos analysis included in this family are chrysotile, lizardite, antigorite. #### 1.1. History Light microscopy has been used for well over 100 years for the determination of mineral species. This analysis is carried out using specialized polarizing microscopes as well as bright field microscopes. The identification of minerals is an on-going process with many new minerals described each year. The first recorded use of asbestos was in Finland about 2500 B.C. where the material was used in the mud wattle for the wooden huts the people lived in as well as strengthening for pottery. Adverse health aspects of the mineral were noted nearly 2000 years ago when Pliny the Younger wrote about the poor health of slaves in the asbestos mines. Although known to be injurious for centuries, the first modern references to its toxicity were by the British Labor Inspectorate when it banned asbestos dust from the workplace in 1898. Asbestosis cases were described in the literature after the turn of the century. Cancer was first suspected in the mid 1930's and a causal link to mesothelioma was made in 1965. Because of the public concern for worker and public safety with the use of this material, several different types of analysis were applied to the determination of asbestos content. Light microscopy requires a great deal of experience and craft. Attempts were made to apply less subjective methods to the analysis. X-ray diffraction was partially successful in determining the mineral types but was unable to separate out the fibrous portions from the non-fibrous portions. Also, the minimum detection limit for asbestos analysis by X-ray diffraction (XRD) is about 1%. Differential Thermal Analysis (DTA) was no more successful. These provide useful corroborating information when the presence of asbestos has been shown by microscopy: however, neither can determine the difference between fibrous and non-fibrous minerals when both habits are present. The same is true of Infrared Absorption (IR) When electron microscopy was applied to asbestos analysis, hundreds of fibers were discovered present too small to be visible in any light microscope. There are two different types of electron microscope used for asbestos analysis: Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). Scanning Electron Microscopy is useful in identifying minerals. The SEM can provide two of the three pieces of information required to identify fibers by electron microscopy: morphology and chemistry. The third is structure as determined by Selected Area Electron Diffraction—SAED which is performed in the TEM. Although the resolution of the SEM is sufficient for very fine fibers to be seen, accuracy of chemical analysis that can be performed on the fibers varies with fiber diameter in fibers of less than 0.2 µm diameter. The TEM is a powerful tool to identify fibers too small to be resolved by light microscopy and should be used in conjunction with this method when necessary. The TEM can provide all three pieces of information required for fiber identification. Most fibers thicker than 1 μm can adequately be defined in the light microscope. The light microscope remains as the best instrument for the determination of mineral type. This is because the minerals under investigation were first described analytically with the light microscope. It is inexpensive and gives positive identification for most samples analyzed. Further, when optical techniques are inadequate, there is ample indication that alternative techniques should be used for complete identification of the sample. #### 1.2. Principle Minerals consist of atoms that may be arranged in random order or in a regular arrangement. Amorphous materials have
atoms in random order while crystalline materials have long range order. Many materials are transparent to light, at least for small particles or for thin sections. The properties of these materials can be investigated by the effect that the material has on light passing through it. The six asbestos minerals are all crystalline with particular properties that have been identified and cataloged. These six minerals are anisotropic. They have a regular array of atoms, but the arrangement is not the same in all directions. Each major direction of the crystal presents a different regularity. Light photons travelling in each of these main directions will encounter different electrical neighborhoods, affecting the path and time of travel. The techniques outlined in this method use the fact that light traveling through fibers or crystals in different directions will behave differently, but predictably. The behavior of the light as it travels through a crystal can be measured and compared with known or determined values to identify the mineral species. Usually, Polarized Light Microscopy (PLM) is performed with strain-free objectives on a bright-field microscope platform. This would limit the resolution of the microscope to about 0.4 µm. Because OSHA requires the counting and identification of fibers visible in phase contrast, the phase contrast platform is used to visualize the fibers with the polarizing elements added into the light path. Polarized light methods cannot identify fibers finer than about 1 µm in diameter even though they are visible. The finest fibers are usually identified by inference from the presence of larger, identifiable fiber bundles. When fibers are present, but not identifiable by light microscopy, use either SEM or TEM to determine the fiber identity. #### 1.3. Advantages and Disadvantages The advantages of light microcopy are: (a) Basic identification of the materials was first performed by light microscopy and gross analysis. This provides a large base of published information against which to check analysis and analytical technique. (b) The analysis is specific to fibers. The minerals present can exist in asbestiform, fibrous, prismatic, or massive varieties all at the same time. Therefore, bulk methods of analysis such as X-ray diffraction, IR analysis, DTA, etc. are inappropriate where the material is not known to be fibrous. (c) The analysis is quick, requires little preparation time, and can be performed onsite if a suitably equipped microscope is available. The disadvantages are: (a) Even using phase-polar illumination, not all the fibers present may be seen. This is a problem for very low asbestos concentrations where agglomerations or large bundles of fibers may not be present to allow identification by inference. (b) The method requires a great degree of sophistication on the part of the microscopist. An analyst is only as useful as his mental catalog of images. Therefore, a microscopist's accuracy is enhanced by experience. The mineralogical training of the analyst is very important. It is the basis on which subjective decisions are made. (c) The method uses only a tiny amount of material for analysis. This may lead to sampling bias and false results (high or low). This is especially true if the sample is severely inhomogeneous. (d) Fibers may be bound in a matrix and not distinguishable as fibers so identification cannot be made. #### 1.4. Method Performance 1.4.1. This method can be used for determination of asbestos content from 0 to 100% asbestos. The detection limit has not been adequately determined, although for selected samples, the limit is very low, depending on the number of particles examined. For mostly homogeneous, finely divided samples, with no difficult fibrous interferences, the detection limit is below 1%. For inhomogeneous samples (most samples), the detection limit remains undefined. NIST has conducted proficiency testing of laboratories on a national scale. Although each round is reported statistically with an average, control limits, etc., the results indicate a difficulty in establishing precision especially in the low concentration range. It is suspected that there is significant bias in the low range especially near 1%. EPA tried to remedy this by requiring a mandatory point counting scheme for samples less than 10%. The point counting procedure is tedious, and may introduce significant biases of its own. It has not been incorporated into this method. 1.4.2. The precision and accuracy of the quantitation tests performed in this method are unknown. Concentrations are easier to determine in commercial products where asbestos was deliberately added because the amount is usually more than a few percent. An analyst's results can be "calibrated" against the known amounts added by the manufacturer. For geological samples, the degree of homogeneity affects the precision. 1.4.3. The performance of the method is analyst dependent. The analyst must choose carefully and not necessarily randomly the portions for analysis to assure that detection of asbestos occurs when it is present. For this reason, the analyst must have adequate training in sample preparation, and experience in the location and identification of asbestos in samples. This is usually accomplished through substantial on-the-job training as well as formal education in mineralogy and microscopy. #### 1.5. Interferences Any material which is long, thin, and small enough to be viewed under the microscope can be considered an interference for asbestos. There are literally hundreds of interferences in workplaces. The techniques described in this method are normally sufficient to eliminate the interferences. An analyst's success in eliminating the interferences depends on proper training. Asbestos minerals belong to two mineral families: the serpentines and the amphiboles. In the serpentine family, the only common fibrous mineral is chrysotile. Occasionally, the mineral antigorite occurs in a fibril habit with morphology similar to the amphiboles. The amphibole minerals consist of a score of different minerals of which only five are regulated by federal standard: amosite, crocidolite, anthophyllite asbestos, tremolite asbestos and actinolite asbestos. These are the only amphibole minerals that have been commercially exploited for their fibrous properties; however, the rest can and do occur occasionally in asbestiform habit. In addition to the related mineral interferences, other minerals common in building material may present a problem for some microscopists: gypsum, anhydrite, brucite, quartz fibers, talc fibers or ribbons, wollastonite, perlite, attapulgite, etc. Other fibrous materials commonly present in workplaces are: fiberglass, mineral wool, ceramic wool, refractory ceramic fibers, kevlar, nomex, synthetic fibers, graphite or carbon fibers, cellulose (paper or wood) fibers, metal fibers, etc. Matrix embedding material can sometimes be a negative interference. The analyst may not be able to easily extract the fibers from the matrix in order to use the method. Where possible, remove the matrix before the analysis, taking careful note of the loss of weight. Some common matrix materials are: vinyl, rubber, tar, paint, plant fiber, cement, and epoxy. A further negative interference is that the asbestos fibers themselves may be either too small to be seen in Phase contrast Microscopy (PCM) or of a very low fibrous quality, having the appearance of plant fibers. The analyst's ability to deal with these materials increases with experience. #### 1.6. Uses and Occupational Exposure Asbestos is ubiquitous in the environment. More than 40% of the land area of the United States is composed of minerals which may contain asbestos. Fortunately, the actual formation of great amounts of asbestos is relatively rare. Nonetheless, there are locations in which environmental exposure can be severe such as in the Serpentine Hills of California. There are thousands of uses for asbestos in industry and the home. Asbestos abatement workers are the most current segment of the population to have occupational exposure to great amounts of asbestos. If the material is undisturbed, there is no exposure. Exposure occurs when the asbestos-containing material is abraded or otherwise disturbed during maintenance operations or some other activity. Approximately 95% of the asbestos in place in the United States is chrysotile. Amosite and crocidolite make up nearly all the difference. Tremolite and anthophyllite make up a very small percentage. Tremolite is found in extremely small amounts in e-certain chrysotile deposits. Actinolite exposure is probably greatest from environmental sources, but has been identified in vermiculite containing, sprayedon insulating materials which may have been certified as asbestos-free. #### 1.7. Physical and Chemical Properties The nominal chemical compositions for the asbestos minerals were given in Section 1. Compared to cleavage fragments of the same minerals, asbestiform fibers possess a high tensile strength along the fiber axis. They are chemically inert, non-combustible, and heat resistant. Except for chrysotile, they are insoluble in Hydrochloric acid (HCl). Chrysotile is slightly soluble in HCl. Asbestos has high electrical resistance and good sound absorbing characteristics. It can be woven into cables, fabrics or other textiles, or matted into papers, felts, and mats. 1.8. Toxicology (This Section is for Information Only and Should Not Be Taken as OSHA Policy) Possible physiologic results of respiratory exposure to asbestos are mesothelioma of the pleura or peritoneum, interstitial fibrosis. asbestosis, pneumoconiosis, or respiratory cancer. The possible consequences of asbestos exposure are detailed in the NIOSH Criteria Document or in the OSHA Asbestos Standards 29 CFR 1910.1001 and 29 CFR 1926,1101. ## 2. Sampling Procedure #### 2.1. Equipment for Sampling - (a) Tube or cork borer sampling
device - mana(b).Knife mater. - (c) 20 mL scintillation vial or similar vial - (d) Sealing encapsulant #### 2.2. Safety Precautions Asbestos is a known carcinogen. Take care when sampling. While in an asbestoscontaining atmosphere, a properly selected and fit-tested respirator should be worn. Take samples in a manner to cause the least amount of dust. Follow these general guidelines: - (a) Do not make unnecessary dust. - (b) Take only a small amount (1 to 2 g). (c) Tightly close the sample container. - (d) Use encapsulant to seal the spot where - the sample was taken, if necessary. #### 2.3. Sampling procedure Samples of any suspect material should be taken from an inconspicuous place. Where the material is to remain, seal the sampling wound with an encapsulant to eliminate the potential for exposure from the sample site. Microscopy requires only a few milligrams of , material. The amount that will fill a 20 mL scintillation yial is more than adequate. Be sure to collect samples from all layers and phases of material. If possible, make separate samples of each different phase of the material. This will aid in determining the actual hazard. DO NOT USE ENVELOPES. PLASTIC OR PAPER BAGS OF ANY KIND TO COLLECT SAMPLES. The use of plastic bags presents a contamination hazard to laboratory personnel and to other samples. When these containers are opened, a bellows effect blows fibers out of the container onto everything, including the person opening the container. If a cork-borer type sampler is available, push the tube through the material all the way, so that all layers of material are sampled. Some samplers are intended to be disposable. These should be capped and sent to the laboratory. If a non-disposable cork borer is used, empty the contents into a scintillation vial and send to the laboratory. Vigorously and completely clean the cork borer between samples. #### 2.4 Shipment Samples packed in glass vials must not touch or they might break in shipment. (a) Seal the samples with a sample seal (such as the OSHA 21) over the end to guard against tampering and to identify the sample. (b) Package the bulk samples in separate packages from the air samples. They may cross-contaminate each other and will invalidate the results of the air samples. (c) Include identifying paperwork with the samples, but not in contact with the suspected asbestos. (d) To maintain sample accountability, ship the samples by certified mail, overnight express, or hand carry them to the laboratory. #### 3. Analysis The analysis of asbestos samples can be divided into two major parts: sample preparation and microscopy. Because of the different asbestos uses that may be encountered by the analyst, each sample may need different preparation steps. The choices are outlined below. There are several different tests that are performed to identify the asbestos species and determine the percentage. They will be explained below. #### 3.1. Safety (a) Do not create unnecessary dust. Handle the samples in HEPA-filter equipped hoods. If samples are received in bags, envelopes or other inappropriate container, open them only in a hood having a face velocity at or greater than 100 fpm. Transfer a small amount to a scintillation vial and only handle the smaller amount. (b) Open samples in a hood, never in the open lab area. (c) Index of refraction oils can be toxic. Take care not to get this material on the skin. Wash immediately with soap and water if this happens. (d) Samples that have been heated in the muffle furnace or the drying oven may be hot. Handle them with tongs until they are cool enough to handle. (e) Some of the solvents used, such as THF (tetrahydrofuran), are toxic and should only be handled in an appropriate fume hood and according to instructions given in the Material Safety Data Sheet (MSDS). #### 3.2. Equipment (a) Phase contrast microscope with 10x, 16x and 40x objectives, 10x wide-field eyepieces, G-22 Walton-Beckett graticule, Whipple disk, polarizer, analyzer and first order red or gypsum plate, 100 Watt illuminator, rotating position condenser with oversize phase rings, central stop dispersion objective, Kohler illumination and a rotating mechanicalstage. (See Figure 1). (b) Stereo microscope with reflected light illumination, transmitted light illumination, polarizer, analyzer and first order red or gypsum plate, and rotating stage. (c) Negative pressure hood for the stereo microscope - (d) Muffle furnace capable of 600 °C - (e) Drying oven capable of 50-150 °C. - (f) Aluminum specimen pans - (g) Tongs for handling samples in the furnace - (h) High dispersion index of refraction oils (Special for dispersion staining.) n=1.550n=1.585 n=1.590 n=1.605 n=1.620 n=1.670 n=1.680 n=1.690 (i) A set of index of refraction oils from about n=1.350 to n=2.000 in n=0.005 increments. (Standard for Becke line analysis.) (j) Glass slides with painted or frosted ends 1 x 3 inches 1mm thick, precleaned. (k) Cover Slips 22 x 22 mm, #11/2 (l) Paper clips or dissection needles (m) Hand grinder (n) Scalpel with both #10 and #11 blades (o) 0.1 molar HCl (p) Decalcifying solution (Baxter Scientific Products) Ethylenediaminetetraacetic Acid, | Tetrasodium | 0.7 g/l | |---------------------------|--------------| | Sodium Potassium Tartrate | 8.0 mg/liter | | Hydrochloric Acid | 99.2 g/liter | | Sodium Tartrate | 0.14 g/liter | | | Ų | - (q) Tetrahydrofuran (THF) - (r) Hotplate capable of 60 °C (s) Balance (t) Hacksaw blade (u) Ruby mortar and pestle #### 3.3. Sample Pre-Preparation Sample preparation begins with prepreparation which may include chemical reduction of the matrix, heating the sample to dryness or heating in the muffle furnace. The end result is a sample which has been reduced to a powder that is sufficiently fine to fit under the cover slip. Analyze different phases of samples separately, e.g., tile and the tile mastic should be analyzed separately as the mastic may contain asbestos while the tile may not. #### (a) Wet Samples Samples with a high water content will not give the proper dispersion colors and must be dried prior to sample mounting. Remove the lid of the scintillation vial, place the bottle in the drying oven and heat at 100 °C to dryness (usually about 2 h). Samples which are not submitted to the lab in glass must be removed and placed in glass vials or aluminum weighing pans before placing them in the drying oven. (b) Samples With Organic Interference— Muffle Furnace These may include samples with tar as a matrix, vinyl asbestos tile, or any other organic that can be reduced by heating. Remove the sample from the vial and weigh in a balance to determine the weight of the submitted portion. Place the sample in a muffle furnace at 500 °C for 1 to 2 h or until all obvious organic material has been removed. Retrieve, cool and weigh again to determine the weight loss on ignition. This is necessary to determine the asbestos content of the submitted sample, because the analyst will be looking at a reduced sample. Notes: Heating above 600 °C will cause the sample to undergo a structural change which, given sufficient time, will convert the chrysotile to forsterite. Heating even at lower temperatures for 1 to 2 h may have a measurable effect on the optical properties of the minerals. If the analyst is unsure of what to expect, a sample of standard asbestos should be heated to the same temperature for the same length of time so that it can be examined for the proper interpretation. #### (c) Samples With Organic Interference—THF Vinyl asbestos tile is the most common material treated with this solvent, although, substances containing tar will sometimes yield to this treatment. Select a portion of the material and then grind it up if possible. Weigh the sample and place it in a test tube. Add sufficient THF to dissolve the organic matrix. This is usually about 4 to 5 mL. Remember, THF is highly flammable. Filter the remaining material through a tared silver membrane, dry and weigh to determine how much is left after the solvent extraction. Further process the sample to remove carbonate or mount directly. #### (d) Samples With Carbonate Interference Carbonate material is often found on fibers and sometimes must be removed in order to perform dispersion microscopy. Weigh out a portion of the material and place it in a test tube. Add a sufficient amount of 0.1 M HCl or decalcifying solution in the tube to react all the carbonate as evidenced by gas formation; i.e., when the gas bubbles stop, add a little more solution. If no more gas forms, the reaction is complete. Filter the material out through a tared silver membrane, dry and weigh to determine the weight lost. #### 3.4. Sample Preparation Samples must be prepared so that accurate determination can be made of the asbestos type and amount present. The following steps are carried out in the low-flow hood (a low-flow hood has less than 50 fpm flow): (1) If the sample has large lumps, is hard, or cannot be made to lie under a cover slip, the grain size must be reduced. Place a small amount between two slides and grind the material between them or grind a small amount in a clean mortar and pestle. The choice of whether to use an alumina, ruby, or diamond mortar depends on the hardness of the material. Impact damage can alter the asbestos mineral if too much mechanical shock occurs. (Freezer mills can completely destroy the observable crystallinity of asbestos and should not be used). For some samples, a portion of material can be shaved off with a scalpel, ground off with a hand grinder or hack saw blade. The preparation tools should either be disposable or cleaned thoroughly. Use vigorous scrubbing to loosen the fibers during the washing. Rinse the implements with copious amounts of water and air-dry in a dust-free environment. (2) If the sample is powder or has been reduced as in 1) above, it is ready to mount. Place a glass slide on a piece of optical tissue and write the identification on
the painted or frosted end. Place two drops of index of refraction medium n=1.550 on the slide. (The medium n=1.550 is chosen because it is the matching index for chrysotile. Dip the end of a clean paper-clip or dissecting needle into the droplet of refraction medium on the slide to moisten it. Then dip the probe into the powder sample. Transfer what sticks on the probe to the slide. The material on the end of the probe should have a diameter of about 3 mm for a good mount. If the material is very fine, less sample may be appropriate. For non-powder samples such as fiber mats, forceps should be used to transfer a small amount of material to the slide. Stir the material in the medium on the slide, spreading it out and making the preparation as uniform as possible. Place a cover-slip on the preparation by gently lowering onto the slide and allowing it to fall "trapdoor" fashion on the preparation to push out any bubbles. Press gently on the cover slip to even out the distribution of particulate on the slide. If there is insufficient mounting oil on the slide, one or two drops may be placed near the edge of the coverslip on the slide. Capillary action will draw the necessary amount of liquid into the preparation. Remove excess oil with the point of a laboratory wiper. Treat at least two different areas of each phase in this fashion. Choose representative areas of the sample. It may be useful to select particular areas or fibers for analysis. This is useful to identify asbestos in severely inhomogeneous samples. When it is determined that amphiboles may be present, repeat the above process using the appropriate high-dispersion oils until an identification is made or all six esbestos minerals have been ruled out. Note that percent determination must be done in the index medium 1.550 because amphiboles tend to disappear in their matching mediums. #### 3.5. Analytical procedure Note: This method presumes some knowledge of mineralogy and optical petrography. The analysis consists of three parts: The determination of whether there is asbestos present, what type is present and the determination of how much is present. The general flow of the analysis is: (1) Gross examination. (2) Examination under polarized light on the stereo microscope. (3) Examination by phase-polar illumination on the compound phase microscope. (4) Determination of species by dispersion stain. Examination by Becke line analysis may also be used; however, this is usually more cumbersome for asbestos determination. (5) Difficult samples may need to be analyzed by SEM or TEM, or the results from those techniques combined with light microscopy for a definitive identification. Identification of a particle as asbestos requires that it be asbestiform. Description of particles should follow the suggestion of Campbell. (Figure 1) BILLING COCE 4510-26-P Figure 1. Particle definitions showing mineral growth habits. From the U.S. Bureau of Mines For the purpose of regulation, the mineral. must be one of the six minerals covered and must be in the asbestos growth habit. Large specimen samples of asbestos generally have the gross appearance of wood. Fibers are easily parted from it. Asbestos fibers are very long compared with their widths. The fibers have a very high tensile strength as demonstrated by bending without breaking. Asbestos fibers exist in bundles that are easily parted, show longitudinal fine structure and may be tufted at the ends showing "bundle of sticks" morphology. In the microscope some of these properties may not be observable. Amphiboles do not always show striations along their length even when they are asbestos. Neither will they always show tufting. They generally do not show a curved nature except for very long fibers. Asbestos and asbestiform minerals are usually characterized in groups by extremely high aspect ratios (greater than 100:1). While aspect ratio analysis is useful for characterizing populations of fibers, it cannot be used to identify individual fibers of intermediate to short aspect ratio. Observation of many fibers is often necessary to determine whether a sample consists of "cleavage fragments" or of asbestos fibers. Most cleavage fragments of the asbestos minerals are easily distinguishable from true asbestos fibers. This is because true cleavage fragments usually have larger diameters than 1 um. Internal structure of particles larger than this usually shows them to have no internal fibrillar structure. In addition, cleavage fragments of the monoclinic amphiboles show inclined extinction under crossed polars with no compensator. Asbestos fibers usually show extinction at zero degrees or ambiguous extinction if any at all. Morphologically, the larger cleavage fragments are obvious by their blunt or stepped ends showing prismatic habit. Also, they tend to be acicular rather than filiform. Where the particles are less than 1 µm in diameter and have an aspect ratio greater than or equal to 3:1, it is recommended that the sample be analyzed by SEM or TEM if there is any question whether the fibers are cleavage fragments or asbestiform particles. Care must be taken when analyzing by electron microscopy because the interferences are different from those in light microscopy and may structurally be very similar to asbestos. The classic interference is between anthophyllite and biopyribole or intermediate fiber. Use the same morphological clues for electron microscopy as are used for light microscopy, e.g. fibril splitting, internal longitudinal striation, fraying, curvature, etc. (1) Gross examination: Examine the sample, preferably in the glass vial. Determine the presence of any obvious fibrous component. Estimate a percentage based on previous experience and current observation. Determine whether any prepreparation is necessary. Determine the number of phases present. This step may be carried out or augmented by observation at 6 to 40x under a stereo microscope. (2) After performing any necessary prepreparation, prepare slides of each phase as described above. Two preparations of the same phase in the same index medium can be made side-by-side on the same glass for convenience. Examine with the polarizing stereo microscope. Estimate the percentage of asbestos based on the amount of birefringent fiber present. (3) Examine the slides on the phase-polar microscopes at magnifications of 160 and 400x. Note the morphology of the fibers. Long, thin, very straight fibers with little curvature are indicative of fibers from the amphibole family. Curved, wavy fibers are usually indicative of chrysotile. Estimate the percentage of asbestos on the phase-polar microscope under conditions of crossed polars and a gypsum plate. Fibers smaller than 1.0 µm in thickness must be identified by inference to the presence of larger, identifiable fibers and morphology. If no larger fibers are visible, electron microscopy should be performed. At this point, only a tentative identification can be made. Full identification must be made with dispersion microscopy. Details of the tests are included in the appendices. (4) Once fibers have been determined to be present, they must be identified. Adjust the microscope for dispersion mode and observe the fibers. The microscope has a rotating stage, one polarizing element, and a system for generating dark-field dispersion microscopy (see Section 4.6. of this appendix). Align a fiber with its length parallel to the polarizer and note the color of the Becke lines. Rotate the stage to bring the fiber length perpendicular to the polarizer and note the color. Repeat this process for every fiber or fiber bundle examined. The colors must be consistent with the colors generated by standard asbestos reference materials for a positive identification. In n=1.550, amphiboles will generally show a vellow to straw-vellow color indicating that the fiber indices of refraction are higher than the liquid. If long, thin fibers are noted and the colors are yellow, prepare further slides as above in the suggested matching liquids listed below: | Type of asbestos | Index of refraction | |------------------|---------------------| | Chrysotile | n=1.550. | | Amosite | n=1.670 r 1.680. | | Crocidolite | n=1.690. | | Anthophyllite | n=1.605 nd 1.620. | | Tremolite | n=1.605 and 1.620. | | Actinolite | n=1.620. | Where more than one liquid is suggested, the first is preferred; however, in some cases this liquid will not give good dispersion color. Take care to avoid interferences in the other liquid; e.g., wollastonite in n=1.620 will give the same colors as tremolite. In n=1.605 wollastonite will appear yellow in all directions. Wollastonite may be determined under crossed polars as it will change from blue to yellow as it is rotated along its fiber axis by tapping on the cover slip. Asbestos minerals will not change in this way. Determination of the angle of extinction may, when present, aid in the determination of anthophyllite from tremolite. True asbestos fibers usually have 0° extinction or ambiguous extinction, while cleavage fragments have more definite extinction. Continue analysis until both preparations have been examined and all present species of asbestos are identified. If there are no fibers present, or there is less than 0.1% present, end the analysis with the minimum number of slides (2). (5) Some fibers have a coating on them which makes dispersion microscopy very difficult or impossible. Becke line analysis or electron microscopy may be performed in those cases. Determine the percentage by light microscopy. TEM analysis tends to overestimate the actual percentage present. (6) Percentage determination is an estimate of occluded area, tempered by gross observation. Gross observation information is used to make sure that the high magnification microscopy does not greatly over- or underestimate the amount of fiber present. This part of the analysis requires a great deal of experience. Satisfactory models for asbestos
content analysis have not yet been developed, although some models based on metallurgical grain-size determination have found some utility. Estimation is more easily handled in situations where the grain sizes visible at about 160x are about the same and the sample is relatively homogeneous. View all of the area under the cover slip to make the percentage determination. View the fields while moving the stage, paying attention to the clumps of material. These are not usually the best areas to perform dispersion microscopy because of the interference from other materials. But, they are the areas most likely to represent the accurate percentage in the sample. Small amounts of asbestos require slower scanning and more frequent analysis of individual fields. Report the area occluded by asbestos as the concentration. This estimate does not generally take into consideration the difference in density of the different species present in the sample. For most samples this is adequate. Simulation studies with similar materials must be carried out to apply microvisual estimation for that purpose and is beyond the scope of this procedure. (7) Where successive concentrations have been made by chemical or physical means, the amount reported is the percentage of the material in the "as submitted" or original state. The percentage determined by microscopy is multiplied by the fractions remaining after pre-preparation steps to give the percentage in the original sample. For example: Step 1. 60% remains after heating at 550 °C for 1 h. Step 2. 30% of the residue of step 1 remains after dissolution of carbonate in 0.1 m HCl. Step 3. Microvisual estimation determines that 5% of the sample is chrysotile asbestos. The reported result is: R=(Microvisual result in percent)×(Fraction remaining after step 2)×(Fraction remaining of original sample after step 1) R =(5)×(.30)×(.60)=0.9% (8) Report the percent and type of asbestos present. For samples where asbestos was identified, but is less than 1.0%, report "Asbestos present, less than 1.0%." There must have been at least two observed fibers or fiber bundles in the two preparations to be reported as present. For samples where asbestos was not seen, report as "None Detected." #### Auxiliary Information Because of the subjective nature of asbestos analysis, certain concepts and procedures need to be discussed in more depth. This information will help the analyst understand why some of the procedures are carried out the way they are. #### 4.1. Light Light is electromagnetic energy. It travels from its source in packets called quanta. It is instructive to consider light as a plane wave. The light has a direction of travel Perpendicular to this and mutually perpendicular to each other, are two vector components. One is the magnetic vector and the other is the electric vector. We shall only be concerned with the electric vector. In this description, the interaction of the vector and the mineral will describe all the observable phenomena. From a light source such a microscope illuminator, light travels in all different direction from the filament. In any given direction away from the filament, the electric vector is perpendicular to the direction of travel of a light ray. While perpendicular, its orientation is random about the travel axis. If the electric vectors from all the light rays were lined up by passing the light through a filter that would only let light rays with electric vectors oriented in one direction pass, the light would then be POLARIZED. Polarized light interacts with matter in the direction of the electric vector. This is the polarization direction. Using this property it is possible to use polarized light to probe different materials and identify them by how they interact with light. The speed of light in a vacuum is a constant at about 2.99×10 8 m/ s. When light travels in different materials such as air, water, minerals or oil, it does not travel at this speed. It travels slower. This slowing is a function of both the material through which the light is traveling and the wavelength or frequency of the light. In general, the more dense the material, the slower the light travels. Also, generally, the higher the frequency, the slower the light will travel. The ratio of the speed of light in a vacuum to that in a material is called the index of refraction (n). It is usually measured at 589 nm (the sodium D line). If white light (light containing all the visible wavelengths) travels through a material, rays of longer wavelengths will travel faster than those of shorter wavelengths, this separation is called dispersion. Dispersion is used as an identifier of materials as described in Section 4.6. #### 4.2. Material Properties Materials are either amorphous or crystalline. The difference between these two descriptions depends on the positions of the atoms in them. The atoms in amorphous materials are randomly arranged with no long range order. An example of an amorphous material is glass. The atoms in crystalline materials, on the other hand, are in regular arrays and have long range order. Most of the atoms can be found in highly predictable locations. Examples of crystalline material are salt, gold, and the asbestos minerals. It is beyond the scope of this method to describe the different types of crystalline materials that can be found, or the full description of the classes into which they can fall. However, some general crystallography is provided below to give a foundation to the procedures described. With the exception of anthophyllite, all the asbestos minerals belong to the monoclinic. crystal type. The unit cell is the basic repeating unit of the crystal and for monoclinic crystals can be described as having three unequal sides, two 90° angles and one angle not equal to 90°. The orthorhombic group, of which anthophyllite is a member has three unequal sides and three 90° angles. The unequal sides are a consequence of the complexity of fitting the different atoms into the unit cell. Although the atoms are in a regular array, that array is not symmetrical in all directions. There is long range order in the three major directions of the crystal. However, the order is different in each of the three directions. This has the effect that the index of refraction is different in each of the three directions. Using polarized light, we can investigate the index of refraction in each of the directions and identify the mineral or material under investigation. The indices α , β , and γ are used to identify the lowest, middle, and highest index of refraction respectively. The x direction, associated with a is called the fast axis. Conversely, the z direction is associated with y and is the slow direction. Crocidolite has α along the fiber length making it "length-fast". The remainder of the asbestos minerals have the yaxis along the fiber length. They are called "length-slow". This orientation to fiber length is used to aid in the identification of asbestos. #### 4.3. Polarized Light Technique Polarized light microscopy as described in this section uses the phase-polar microscope described in Section 3.2. A phase contrast microscope is fitted with two polarizing elements, one below and one above the sample. The polarizers have their polarization directions at right angles to each other. Depending on the tests performed, there may be a compensator between these two polarizing elements. A compensator is a piece of mineral with known properties that "compensates" for some deficiency in the optical train. Light emerging from a polarizing element has its electric vector pointing in the polarization direction of the element. The light will not be subsequently transmitted through a second element set at a right angle to the first element. Unless the light is altered as it passes from one element to the other, there is no transmission of light. #### 4.4. Angle of Extinction Crystals which have different crystal regularity in two or three main directions are said to be anisotropic. They have a different index of refraction in each of the main directions. When such a crystal is inserted between the crossed polars, the field of view is no longer dark but shows the crystal in color. The color depends on the properties of the crystal. The light acts as if it travels through the crystal along the optical axes. If a crystal optical axis were lined up along one of the polarizing directions (either the polarizer or the analyzer) the light would appear to travel only in that direction, and it would blink out or go dark. The difference in degrees between the fiber direction and the angle at which it blinks out is called the angle of extinction. When this angle can be measured, it is useful in identifying the mineral. The procedure for measuring the angle of extinction is to first identify the polarization direction in the microscope. A commercial alignment slide can be used to establish the polarization directions or use anthophyllite or another suitable mineral. This mineral has a zero degree angle of extinction and will go dark to extinction as it aligns with the polarization directions. When a fiber of anthophyllite has gone to extinction, align the eyepiece reticle or graticule with the fiber so that there is a visual cue as to the direction of polarization. in the field of view. Tape or otherwise secure the eyepiece in this position so it will not After the polarization direction has been identified in the field of view, move the particle of interest to the center of the field of view and align it with the polarization direction. For fibers, align the fiber along this direction. Note the angular reading of the rotating stage. Looking at the particle, rotate the stage until the fiber goes dark or "blinks out". Again note the reading of the stage. The difference in the first reading and the second is an angle of extinction. The angle measured may vary as the orientation
of the fiber changes about its long axis. Tables of mineralogical data usually report the maximum angle of extinction. Asbestos forming minerals, when they exhibit an angle of extinction, usually do show an angle of extinction close to the reported maximum, or as appropriate depending on the substitution chemistry. #### 4.5. Crossed Polars With Compensator When the optical axes of a crystal are not lined up along one of the polarizing directions (either the polarizer or the analyzer) part of the light travels along one axis and part travels along the other visible axis. This is characteristic of birefringent materials. The color depends on the difference of the two visible indices of refraction and the thickness of the crystal. The maximum difference available is the difference between the a and the y axes. This maximum difference is usually tabulated as the birefringence of the crystal. For this test, align the fiber at 45° to the polarization directions in order to maximize the contribution to each of the optical axes. The colors seen are called retardation colors. They arise from the recombination of light which has traveled through the two separate directions of the crystal. One of the rays is retarded behind the other since the light in that direction travels slower. On recombination, some of the colors which make up white light are enhanced by constructive interference and some are suppressed by destructive interference. The result is a color dependent on the difference between the indices and the thickness of the crystal. The proper colors, thicknesses, and retardations are shown on a Michel-Levy chart. The three items, retardation, thickness and birefringence are related by the following relationship: λ $R = t(n_{\gamma} - \alpha)$ R = retardation, t = crystal thickness in μm, and $\alpha.\gamma$ = indices of refraction. Examination of the equation for asbestos minerals reveals that the visible colors for almost all common asbestos minerals and fiber sizes are shades of gray and black. The eye is relatively poor at discriminating different shades of gray. It is very good at discriminating different colors. In order to compensate for the low retardation, a compensator is added to the light train between the polarization elements. The compensator used for this test is a gypsum plate of known thickness and birefringence. Such a compensator when oriented at 45° to the polarizer direction, provides a retardation of 530 nm of the 530 nm wavelength color. This enhances the red color and gives the background a characteristic red to redmagenta color. If this "full-wave" compensator is in place when the asbestos preparation is inserted into the light train, the colors seen on the fibers are quite different. Gypsum, like asbestos ĥas a fast axis and a slow axis. When a fiber is aligned with its fast axis in the same direction as the fast axis of the gypsum plate, the ray vibrating in the slow direction is retarded by both the asbestos and the gypsum. This results in a higher retardation than would be present for either of the two minerals. The color seen is a second order blue. When the fiber is rotated 90° using the rotating stage, the slow direction of the fiber is now aligned with the fast direction of the gypsum and the fast direction of the fiber is aligned with the slow direction of the gypsum. Thus, one ray vibrates faster in the fast direction of the gypsum, and slower in the slow direction of the fiber; the other ray will vibrate slower in the slow direction of the gypsum and faster in the fast direction of the fiber. In this case, the effect is subtractive and the color seen is a first order yellow. As long as the fiber thickness does not add appreciably to the, color, the same basic colors will be seen for all asbestos types except crocidolite. In crocidolite the colors will be weaker, may be in the opposite directions, and will be altered by the blue absorption color natural to crocidolite. Hundreds of other materials will give the same colors as asbestos, and therefore, this test is not definitive for asbestos. The test is useful in discriminating against fiberglass or other amorphous fibers such as some synthetic fibers. Certain synthetic fibers will show retardation colors different than asbestos; however, there are some forms of polyethylene and aramid which will show morphology and retardation colors similar to asbestos minerals. This test must be supplemented with a positive identification test when birefringent fibers are present which can not be excluded by morphology. This test is relatively ineffective for use on fibers less than 1 µm in diameter. For positive confirmation TEM or SEM should be used if no larger bundles or fibers are visible. 4.6. Dispersion Staining Dispersion microscopy or dispersion staining is the method of choice for the identification of asbestos in bulk materials. Becke line analysis is used by some laboratories and yields the same results as does dispersion staining for asbestos and can be used in lieu of dispersion staining. Dispersion staining is performed on the same platform as the phase-polar analysis with the analyzer and compensator removed. One polarizing element remains to define the direction of the light so that the different indices of refraction of the fibers may be separately determined. Dispersion microscopy is a dark-field technique when used for asbestos. Particles are imaged with scattered light. Light which is unscattered is blocked from reaching the eye either by the back field image mask in a McCrone objective or a back field image mask in the phase condenser. The most convenient method is to use the rotating phase condenser to move an oversized phase ring into place. The ideal size for this ring is for the central disk to be just larger than the objective entry aperture as viewed in the back focal plane. The larger the disk, the less scattered light reaches the eye. This will have the effect of diminishing the intensity of dispersion color and will shift the actual color seen. The colors seen vary even on microscopes from the same manufacturer. This is due to the different bands of wavelength exclusion by different mask sizes. The mask may either reside in the condenser or in the objective back focal plane. It is imperative that the analyst determine by experimentation with asbestos standards what the appropriate colors should be for each asbestos type. The colors depend also on the temperature of the preparation and the exact chemistry of the asbestos. Therefore, some slight differences from the standards should be allowed. This is not a serious problem for commercial asbestos uses. This technique is used for identification of the indices of refraction for fibers by recognition of color. There is no direct numerical readout of the index of refraction. Correlation of color to actual index of refraction is possible by referral to published conversion tables. This is not necessary for the analysis of asbestos. Recognition of appropriate colors along with the proper morphology are deemed sufficient to identify the commercial asbestos minerals. Other techniques including SEM, TEM, and XRD may be required to provide additional information in order to identify other types of asbestos. Make a preparation in the suspected matching high dispersion oil, e.g., n=1.550 for chrysotile. Perform the preliminary tests to determine whether the fibers are birefringent or not. Take note of the morphological character. Wavy fibers are indicative of chrysotile while long, straight, thin, frayed fibers are indicative of amphibole asbestos. This can aid in the selection of the appropriate matching oil. The microscope is set up and the polarization direction is noted as in Section 4.4. Align a fiber with the polarization direction. Note the color. This is the color parallel to the polarizer. Then rotate the fiber rotating the stage 90° so that the polarization direction is across the fiber. This is the perpendicular position. Again note the color. Both colors must be consistent with standard asbestos minerals in the correct direction for a positive identification of asbestos. If only one of the colors is correct while the other is not, the identification is not positive. If the colors in both directions are bluish-white, the analyst has chosen a matching index oil which is higher than the correct matching oil. e.g. the analyst has used n = 1.620 where chrysotile is present. The next lower oil (Section 3.5.) should be used to prepare another specimen. If the color in both directions is yellow-white to straw-yellowwhite, this indicates that the index of the oil is lower than the index of the fiber, e.g. the preparation is in n = 1.550 while anthophyllite is present. Select the next higher oil (Section 3.5.) and prepare another slide. Continue in this fashion until a positive identification of all asbestos species present has been made or all possible asbestos species have been ruled out by negative results in this test. Certain plant fibers can have similar dispersion colors as asbestos. Take care to note and evaluate the morphology of the fibers or remove the plant fibers in pre-preparation. Coating material on the fibers such as carbonate or vinyl may destroy the dispersion color. Usually, there will be some outcropping of fiber which will show the colors sufficient for identification. When this is not the case, treat the sample as described in Section 3.3. and then perform dispersion staining. Some samples will yield to Becke line analysis if they are coated or electron microscopy can be used for identification. #### 5. References 5.1. Crane, D.T., Asbestos in Air, OSHA method ID160, Revised November 1992. 5.2. Ford, W.E., Dana's Textbook of Mineralogy, Fourth Ed.; John Wiley and Son, New York, 1950, p. vii. New York, 1950, p. vii. 5.3. Selikoff, I.J., Lee, D.H.K., Asbestos and Disease, Academic Press, New York, 1978, pp. 3, 20. 5.4. Women Inspectors of
Factories. Annual Report for 1898, H.M. Statistical Office, London, p. 170 (1898). 5.5. Selikoff, I.J., Lee, D.H.K., Asbestos and Disease, Academic Press, New York, 1978, pp. 26, 30. 5.6. Campbell, W.J., et al, Selected Silicate Minerals and Their Asbestiform Varieties, United States Department of the Interior, Bureau of Mines, Information Circular 8751, 1977. 5.7. Asbestos, Code of Federal Regulations, 29 CFR 1910.1001 and 29 CFR 1926.58. 5.8. National Emission Standards for Hazardous Air Pollutants; Asbestos NESHAP Revision, Federal Register, Vol. 55, No. 224, 20 November 1990, p. 48410. 5.9. Ross, M. The Asbestos Minerals: Definitions, Description, Modes of Formation, Physical and Chemical Properties and Health Risk to the Mining Community, Nation Bureau of Standards Special Publication, Washington, D.C., 1977. 5.10. Lilis, R., Fibrous Zeolites and Endemic Mesothelioma in Cappadocia, Turkey, J. Occ Medicine, 1981, 23, (8) .548– 550. - 5.11. Occupational Exposure to Asbestos—1972, U.S. Department of Health Education and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, HSM-72—10267. - 5.12. Campbell, W.J., et al, Relationship of Mineral Habit to Size Characteristics for Tremolite Fragments and Fibers, United States Department of the Interior, Bureau of Mines, Information Circular 8367, 1979. 5.13. Mefford, D., DCM Laboratory, Denver, private communication, July 1987. 5.14. Deer, W.A., Howie, R.A., Zussman, J., Rock Forming Minerals, Longman, Thetford, UK, 1974. 5.15. Kerr, P.F., Optical Mineralogy; Third Ed. McGraw-Hill, New York, 1959. 5.16. Veblen, D.R. (Ed.), Amphiboles and Other Hydrous Pyriboles—Mineralogy, Reviews in Mineralogy, Vol 9A, Michigan, 1982, pp 1–102. 5.17. Dixon, W.C., Applications of Optical Microscopy in the Analysis of Asbestos and Quartz, ACS Symposium Series, No. 120, Analytical Techniques in Occupational Health Chemistry, 1979. 5.18. Polarized Light Microscopy, McCrone Research Institute, Chicago, 1976. 5.19. Asbestos Identification, McCrone Research Institute, G & G printers, Chicago, 1987. 5.20. McCrone, W.C., Calculation of Refractive Indices from Dispersion Staining Data, The Microscope, No 37, Chicago, 1989. 5.21. Levadie, B. (Ed.), Asbestos and Other Health Related Silicates, ASTM Technical Publication 834, ASTM, Philadelphia 1982. - 5.22. Steel, E. and Wylie, A., Riordan, P.H. (Ed.), Mineralogical Characteristics of Asbestos, *Geology of Asbestos Deposits*, pp. 93–101, SME-AIME, 1981. - 5.23. Zussman, J., The Mineralogy of Asbestos, Asbestos: Properties, Applications and Hazards, pp. 45–67 Wiley, 1979. #### Appendix L to § 1915.1001—Work Practices and Engineering Controls for Automotive Brake and Clutch Inspection, Disassembly, Repair and Assembly—Mandatory This mandatory appendix specifies engineering controls and work practices that must be implemented by the employer during automotive brake and clutch inspection, disassembly, repair, and assembly operations. Proper use of these engineering controls and work practices will reduce employees' asbestos exposure below the permissible exposure level during clutch and brake inspection, disassembly, repair and assembly operations. The employer shall institute engineering controls and work practices using either the method set forth in paragraph [A] or paragraph [B] of this appendix, or any other method which the employer can demonstrate to be equivalent in terms of reducing employee exposure to asbestos as defined and which meets the requirements described in paragraph [C] of this appendix, for those facilities in which no more than 5 pairs of brakes or 5 clutches are inspected, disassembled, reassembled and/or repaired per week, the method set forth in paragraph [D] of this appendix may be used: [A] Negative Pressure Enclosure/HEPA Vacuum System Method (1) The brake and clutch inspection, disassembly, repair, and assembly operations shall be enclosed to cover and contain the clutch or brake assembly and to prevent the release of asbestos fibers into the worker's breathing zone. (2) The enclosure shall be sealed tightly and thoroughly inspected for leaks before work begins on brake and clutch inspection, disassembly, repair, and assembly. (3) The enclosure shall be such that the worker can clearly see the operation and shall provide impermeable sleeves through which the worker can handle the brake and clutch inspection, disassembly, repair and assembly. The integrity of the sleeves and ports shall be examined before work begins. (4) A HEPA-filtered vacuum shall be employed to maintain the enclosure under negative pressure throughout the operation. Compressed-air may be used to remove asbestos fibers or particles from the enclosure. (5) The HEPA vacuum shall be used first to loosen the asbestos containing residue from the brake and clutch parts and then to evacuate the loosened asbestos containing material from the enclosure and capture the material in the vacuum filter. (6) The vacuum's filter, when full, shall be first wetted with a fine mist of water, then removed and placed immediately in an impermeable container, labeled according to paragraph (j)(2)(ii) of this section and disposed of according to paragraph (k) of this section. (7) Any spills or releases of asbestos containing waste material from inside of the enclosure or vacuum hose or vacuum filter shall be immediately cleaned up and disposed of according to paragraph (k) of the section. [B] Low Pressure/Wet Cleaning Method (1) A catch basin shall be placed under the brake assembly, positioned to avoid splashes and spills. (2) The reservoir shall contain water containing an organic solvent or wetting agent. The flow of liquid shall be controlled such that the brake assembly is gently flooded to prevent the asbestos-containing brake dust from becoming airborne. (3) The aqueous solution shall be allowed to flow between the brake drum and brake support before the drum is removed. (4) After removing the brake drum, the wheel hub and back of the brake assembly shall be thoroughly wetted to suppress dust. (5) The brake support plate, brake shoes and brake components used to attach the brake shoes shall be thoroughly washed before removing the old shoes. (6) In systems using filters, the filters, when full, shall be first wetted with a fine mist of water, then removed and placed immediately in an impermeable container, labeled according to paragraph (j)(2)(ii) of this section and disposed of according to paragraph (k) of this section. (7) Any spills of asbestos-containing aqueous solution or any asbestos-containing waste material shall be cleaned up immediately and disposed of according to paragraph (k) of this section. (8) The use of dry brushing during low pressure/wet cleaning operations is prohibited. #### [C] Equivalent Methods An equivalent method is one which has sufficient written detail so that it can be reproduced and has been demonstrated that the exposures resulting from the equivalent method are equal to or less than the exposures which would result from the use of the method described in paragraph [A] of this appendix. For purposes of making this comparison, the employer shall assume that exposures resulting from the use of the method described in paragraph [A] of this appendix shall not exceed 0.004 f/cc, as measured by the OSHA reference method and as averaged over at least 18 personal samples. #### [D] Wet Method - (1) A spray bottle, hose nozzle, or other implement capable of delivering a fine mist of water or amended water or other delivery system capable of delivering water at low pressure, shall be used to first thoroughly wet the brake and clutch parts. Brake and clutch components shall then be wiped clean with a cloth. - (2) The cloth shall be placed in an impermeable container, labelled according to paragraph (j)(2)(ii) of this section and then disposed of according to paragraph (k) of this section, or the cloth shall be laundered in a way to prevent the release of asbestos fibers in excess of 0.1 fiber per cubic centimeter of air. - (3) Any spills of solvent or any asbestos containing waste material shall be cleaned up immediately according to paragraph (k) of this section. - (4) The use of dry brushing during the wet method operations is prohibited. Construction #### PART 1926—[AMENDED] 1. The authority citation of subpart Z of 29 CFR part 1926 continues to read as follows: Authority: Sections 6 and 8, Occupational Safety and Health Act, 29 U.S.C. 655, 657; Secretary of Labor's Orders Nos. 12–71 (36 FR 8754), 8–76 (41 FR 25059), 9–83 (48 FR 35736) or 1–90 (55 FR 9033) as applicable; and 29 CFR part 1911. Section 1926.1102 not issued under 29 U.S.C. 655 or 29 CFR part 1911; also issued under 5 U.S.C. 653. Section 1926.1103 through 1926.1118 also issued under 29 U.S.C. 6653. Section 1926.1128 also issued under 29 U.S.C. 653. Section 1926.1145 and 1926.1147 also issued under 29 U.S.C. 653. Section 1926.1148 also issued under 29 U.S.C. 653. - 2. Section 1926.58 Asbestos, tremolite, anthophyllite, and actinolite is redesignated as § 1926.1101 Asbestos and § 1926.58 is reserved. - 3. Section 1926.1101 is amended by revising the section heading and paragraphs (a) through (p) (all the text preceding the appendices) and by adding paragraph (q) to read as follows: #### § 1926.1101 Asbestos. - (a) Scope and application. This section regulates asbestos exposure in all work as defined in 29 CFR 1910.12(b), including but not limited to the following: - (1) Demolition or salvage of structures where asbestos is present; - (2) Removal or encapsulation of materials containing asbestos; - (3) Construction, alteration, repair, maintenance, or renovation of structures, substrates, or portions thereof, that contain asbestos; - (4) Installation of products containing asbestos: - (5) Asbestos spill/emergency cleanup; and - (6) Transportation, disposal, storage, containment of and housekeeping activities involving
asbestos or products containing asbestos, on the site or location at which construction activities are performed. - (7) Coverage under this standard shall be based on the nature of the work operation involving asbestos exposure. (b) Definitions. Aggressive method means removal or disturbance of building material by sanding, abrading, grinding or other method that breaks, crumbles, or disintegrates intact ACM. Amended water means water to which surfactant (wetting agent) has been added to increase the ability of the liquid to penetrate ACM. Asbestos includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that has been chemically treated and/or altered. For purposes of this standard, "asbestos" includes PACM, as defined below. Asbestos-containing material (ACM), means any material containing more than one percent asbestos. Assistant Secretary means the Assistant Secretary of Labor for Occupational Safety and Health, U.S. Department of Labor, or designee. Authorized person means any person authorized by the employer and required by work duties to be present in regulated areas. Building/facility owner is the legal entity, including a lessee, which exercises control over management and record keeping functions relating to a building and/or facility in which activities covered by this standard take place. Certified Industrial Hygienist (CIH) means one certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene. Class I asbestos work means activities involving the removal of TSI and surfacing ACM and PACM. Class II asbestos work means activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastics. Class III asbestos work means repair and maintenance operations, where "ACM", including thermal system insulation and surfacing material, is likely to be disturbed. Class IV asbestos work means maintenance and custodial activities during which employees contact ACM and PACM and activities to clean up waste and debris containing ACM and PACM. Clean room means an uncontaminated room having facilities for the storage of employees' street clothing and uncontaminated materials and equipment. Closely resemble means that the major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace. Competent person means, in addition to the definition in 29 CFR 1926.32 (f). one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f): in addition, for Class I and Class II work who is specially trained in a training course which meet the criteria of EPA's Model Accreditation Plan (40 CFR 763) for project designer or supervisor, or its equivalent and, for Class II and Class IV work, who is trained in an operations and maintenance (O&M) course developed by EPA [40 CFR 763.92 (a)(2)]. Critical barrier means one or more layers of plastic sealed over all openings into a work area or any other similarly placed physical barrier sufficient to prevent airborne asbestos in a work area from migrating to an adjacent area. Decontamination area means an enclosed area adjacent and connected to the regulated area and consisting of an equipment room, shower area, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos. Demolition means the wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products. Director means the Director, National Institute for Occupational Safety and Health, U.S. Department of Health and Human Services, or designee. Disturbance means contact which releases fibers from ACM or PACM or debris containing ACM or PACM. This term includes activities that disrupt the matrix of ACM or PACM, render ACM or PACM friable, or generate visible debris. Disturbance includes cutting away small amounts of ACM and PACM, no greater than the amount which can be contained in one standard sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or waste bag which shall not exceed 60 inches in length and width. Employee exposure means that exposure to airborne asbestos that would occur if the employee were not using respiratory protective equipment. Equipment room (change room) means a contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment. Fiber means a particulate form of asbestos, 5 micrometers or longer, with a length-to-diameter ratio of at least 3 to 1. Glovebag means an impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glove-like appendages through which material and tools may be handled. High-efficiency particulate air (HEPA) filter means a filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter. Homogeneous area means an area of surfacing material or thermal system insulation that is uniform in color and texture. Industrial hygienist means a professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Intact means that the ACM has not crumbled, been pulverized, or otherwise deteriorated so that it is no longer likely to be bound with its matrix. Modification for purposes of paragraph (g)(6)(ii), means a changed or altered procedure, material or component of a control system, which replaces a procedure, material or component of a required system. Omitting a procedure or component, or reducing or diminishing the stringency or strength of a material or component of the control system is not a "modification" for purposes of paragraph (g)(6)(ii) of this section. Negative Initial Exposure Assessment means a demonstration by the employer, which complies with the criteria in paragraph (f)(2)(iii) of this section, that employee exposure during an operation is expected to be consistently below the PACM means "presumed asbestos containing material". Presumed Asbestos Containing Material means thermal system insulation and surfacing material found in buildings constructed no later than 1980. The designation of a material as "PACM" may be rebutted pursuant to paragraph (k)(4) of this section. Project Designer means a person who has successfully completed the training requirements for an abatement project designer established by 40 U.S.C. § 763.90(g). Regulated area means: an area established by the employer to demarcate areas where Class I, II, and III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work accumulate; and a work area within which airborne concentrations of asbestos, exceed or there is a reasonable possibility they may exceed the permissible exposure limit. Requirements for regulated areas are set out in paragraph (e)(6) of this section. Removal means all operations where ACM and/or PACM is taken out or stripped from structures or substrates, and includes demolition operations. Renovation means the modifying of any existing structure, or portion thereof. Repair means overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates. Surfacing material means material that is sprayed, troweled-on or otherwise applied to surfaces (such as acoustical plaster on ceilings and fireproofing materials on structural members, or other materials on surfaces for acoustical, fireproofing, and other Surfacing ACM means surfacing material which contains more than 1% asbestos. Thermal system insulation (TSI) means ACM applied to pipes, fittings, boilers, breeching, tanks, ducts or other structural components to prevent heat loss or gain. Thermal system insulation ACM is thermal system insulation which contains more than 1% asbestos. - (c) Permissible exposure limits (PELS)—(1) Time-weighted average limit (TWA). The employer shall ensure that no employee is exposed to an airborne concentration of asbestos in excess of 0.1 fiber per cubic centimeter of air as an eight (8) hour time-weighted average (TWA), as determined by the method prescribed in Appendix A of this section, or by an equivalent method. - (2) Excursion limit. The employer shall ensure that no employee is exposed to an airborne concentration of asbestos in excess of 1.0 fiber per cubic centimeter of air (1 f/cc) as averaged over a sampling period of thirty (30) minutes, as determined by the method prescribed in Appendix A of this section, or by an equivalent method. - (d) Multi-employer worksites. (1) On multi-employer worksites, an employer performing work requiring the establishment of a regulated area shall inform other employers on the site of the nature of the employer's work with asbestos and/or PACM, of the existence of and requirements pertaining to regulated areas, and the measures taken to ensure that employees of such other employers are not exposed to asbestos. - (2) Asbestos hazards at a multiemployer work site shall be abated by the contractor who created or controls the source of asbestos contamination. For example, if there is a significant breach of an enclosure containing Class I work, the employer responsible for erecting the enclosure shall
repair the breach immediately. - (3) In addition, all employers of employees exposed to asbestos hazards shall comply with applicable protective provisions to protect their employees. For example, if employees working immediately adjacent to a Class I asbestos job are exposed to asbestos due to the inadequate containment of such job, their employer shall either remove the employees from the area until the enclosure breach is repaired; or perform an initial exposure assessment pursuant to (f)(1) of this section. - (4) All employers of employees working adjacent to regulated areas established by another employer on a multi-employer work-site, shall take steps on a daily basis to ascertain the integrity of the enclosure and/or the effectiveness of the control method relied on by the primary asbestos contractor to assure that asbestos fibers do not migrate to such adjacent areas. (5) All general contractors on a construction project which includes work covered by this standard shall be deemed to exercise general supervisory authority over the work covered by this standard, even though the general contractor is not qualified to serve as the asbestos "competent person" as defined by paragraph (b) of this section. As supervisor of the entire project, the general contractor shall ascertain whether the asbestos contractor is in compliance with this standard, and shall require such contractor to come into compliance with this standard when necessary. (e) Regulated areas—(1) All Class I, II and III asbestos work shall be conducted within regulated areas. All other operations covered by this standard shall be conducted within a regulated area where airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed a PEL. Regulated areas shall comply with the requirements of paragraphs (2), (3),(4) and (5) of this section. (2) Demarcation. The regulated area shall be demarcated in any manner that minimizes the number of persons within the area and protects persons outside the area from exposure to airborne concentrations of asbestos. Where critical barriers or negative pressure enclosures are used, they may demarcate the regulated area. Signs shall be provided and displayed pursuant to the requirements of paragraph (k)(6) of this section. (3) Access. Access to regulated areas shall be limited to authorized persons and to persons authorized by the Act or regulations issued pursuant thereto. (4) Respirators. All persons entering a regulated area where employees are required pursuant to paragraph (h)(2) of this section to wear respirators shall be supplied with a respirator selected in accordance with paragraph (h)(2) of this (5) Prohibited activities. The employer shall ensure that employees do not eat, drink, smoke, chew tobacco or gum, or apply cosmetics in the regulated area. (6) Competent Persons. The employer shall ensure that all asbestos work performed within regulated areas is supervised by a competent person, as defined in paragraph (b) of this section. The duties of the competent person are set out in paragraph (o) of this section. (f) Exposure assessments and monitoring—(1) General monitoring criteria. (i) Each employer who has a workplace of work operation where exposure monitoring is required under this section shall perform monitoring to determine accurately the airborne concentrations of asbestos to which employees may be exposed. (ii) Determinations of employee exposure shall be made from breathing zone air samples that are representative of the 8-hour TWA and 30-minute shortterm exposures of each employee. (iii) Representative 8-hour TWA employee exposure shall be determined on the basis of one or more samples representing full-shift exposure for employees in each work area. Representative 30-minute short-term employee exposures shall be determined on the basis of one or more samples representing 30 minute exposures associated with operations that are most likely to produce exposures above the excursion limit for employees in each work area. (2) Initial Exposure Assessment. (i) Each employer who has a workplace or work operation covered by this standard shall ensure that a "competent person" conducts an exposure assessment immediately before or at the initiation of the operation to ascertain expected exposures during that operation or workplace. The assessment must be completed in time to comply with requirements which are triggered by exposure data or the lack of a "negative exposure assessment," and to provide information necessary to assure that all control systems planned are appropriate for that operation and will work properly. (ii) Basis of Initial Exposure Assessment: The initial exposure assessment shall be based on data derived from the following sources: (A) If feasible, the employer shall monitor employees and base the exposure assessment on the results of exposure monitoring which is conducted pursuant to the criteria in paragraph (f)(2)(iii) of this section. (B) In addition, the assessment shall include consideration of all observations, information or calculations which indicate employee exposure to asbestos, including any previous monitoring conducted in the workplace, or of the operations of the employer which indicate the levels of airborne asbestos likely to be encountered on the job. However, the assessment may conclude that exposures are likely to be consistently below the PELs only as a conclusion of a "negative exposure assessment" conducted pursuant to (f)(2)(iii) of this (C) For Class I asbestos work, until the employer conducts exposure monitoring and documents that employees on that job will not be exposed in excess of the PELs, or otherwise makes a negative exposure assessment pursuant to paragraph (f)(2)(iii) of this section, the employer shall presume that employees are exposed in excess of the TWA and excursion limit. (iii) Negative Exposure Assessment: For any one specific asbestos job which will be performed by employees who have been trained in compliance with the standard, the employer may demonstrate that employee exposures will be below the PELs by data which conform to the following criteria; (A) Objective data demonstrating that the product or material containing asbestos minerals or the activity involving such product or material cannot release airborne fibers in concentrations exceeding the TWA and. excursion limit under those work conditions having the greatest potential for releasing asbestos; or (B) Where the employer has monitored prior asbestos jobs for the PEL and the excursion limit within 12 months of the current or projected job. the monitoring and analysis were performed in compliance with the asbestos standard in effect; and the data were obtained during work operations conducted under workplace conditions "closely resembling" the processes, type of material, control methods, work practices, and environmental conditions used and prevailing in the employer's current operations, the operations were conducted by employees whose training and experience are no more extensive than that of employees performing the current job, and these data show that under the conditions prevailing and which will prevail in the current workplace there is a high degree of certainty that employee exposures will not exceed the TWA and excursion (C) The results of initial exposure monitoring of the current job made from breathing zone air samples that are representative of the 8-hour TWA and 30-minute short-term exposures of each employee covering operations which are most likely during the performance of the entire asbestos job to result in exposures over the PELs. (3) Periodic monitoring. (i) Class I and II operations. The employer shall conduct daily monitoring that is representative of the exposure of each employee who is assigned to work within a regulated area who is performing Class I or II work, unless the employer pursuant to (f)(2)(iii) of this section, has made a negative exposure assessment for the entire operation. (ii) All operations under the standard other than Class I and II operations. The employer shall conduct periodic monitoring of all work where exposures are expected to exceed a PEL, at intervals sufficient to document the validity of the exposure prediction. (iii) Exception: When all employees required to be monitored daily are equipped with supplied-air respirators operated in the positive-pressure mode, the employer may dispense with the daily monitoring required by this paragraph. However, employees performing Class I work using a control method which is not listed in paragraph (g)(4) (i), (ii), or (iii) of this section or using a modification of a listed control method, shall continue to be monitored daily even if they are equipped with supplied-air respirators. (4) (i) Termination of monitóring. If the periodic monitoring required by paragraph (f)(3) of this section reveals that employee exposures, as indicated by statistically reliable measurement, are below the permissible exposure limit and excursion limit the employer may discontinue monitoring for those employees whose exposures are represented by such monitoring. (ii) Additional monitoring. Notwithstanding the provisions of paragraph (f) (2) and (3), and (f)(4) of this section, the employer shall institute the exposure monitoring required under paragraph (f)(3) of this section whenever there has been a change in process, control equipment, personnel or work practices that may result in new or additional exposures above the permissible exposure limit and/or excursion limit or when the employer has any reason to suspect that a change may result in new or additional exposures above the permissible exposure limit and/or excursion limit. Such additional monitoring is required. regardless of whether a "negative exposure assessment" was previously produced for a specific job. (5) Observation of monitoring. (i) The employer shall provide affected employees and their
designated representatives an opportunity to observe any monitoring of employee exposure to asbestos conducted in accordance with this section. (ii) When observation of the monitoring of employee exposure to asbestos requires entry into an area where the use of protective clothing or equipment is required, the observer shall be provided with and be required to use such clothing and equipment and shall comply with all other applicable safety and health procedures. (g) Methods of compliance—(1) Engineering controls and work practices for all operations covered by this section. The employer shall use the following engineering controls and work practices in all operations covered by this section, regardless of the levels of exposure: (i) Vacuum cleaners equipped with HEPA filters to collect all debris and dust containing ACM or PACM; and, (ii) Wet methods, or wetting agents, to control employee exposures during asbestos handling, mixing, removal, cutting, application, and cleanup, except where employers demonstrate that the use of wet methods is infeasible due to for example, the creation of electrical hazards, equipment malfunction, and, in roofing, slipping hazards; and (iii) Prompt clean-up and disposal of wastes and debris contaminated with asbestos in leak-tight containers. (2) In addition to the requirements of paragraph (g)(1) of this section, the employer shall use the following control methods to achieve compliance with the TWA permissible exposure limit and excursion limit prescribed by paragraph (c) of this section; (i) Local exhaust ventilation equipped with HEPA filter dust collection (ii) Enclosure or isolation of processes producing asbestos dust; (iii) Ventilation of the regulated area to move contaminated air away from the breathing zone of employees and toward a filtration or collection device equipped with a HEPA filter; (iv) Use of other work practices and engineering controls that the Assistant Secretary can show to be feasible. (v) Wherever the feasible engineering and work practice controls described above are not sufficient to reduce employee exposure to or below the permissible exposure limit and/or excursion limit prescribed in paragraph (c) of this section, the employer shall use them to reduce employee exposure to the lowest levels attainable by these controls and shall supplement them by the use of respiratory protection that complies with the requirements of paragraph (h) of this section. (3) Prohibitions. The following work practices and engineering controls shall not be used for work related to asbestos or for work which disturbs ACM or PACM, regardless of measured levels of asbestos exposure or the results of initial exposure assessments: (i) High-speed abrasive disc saws that are not equipped with point of cut ventilator or enclosures with HEPA filtered exhaust air. (ii) Compressed air used to remove asbestos, or materials containing asbestos, unless the compressed air is used in conjunction with an enclosed ventilation system designed to capture the dust cloud created by the compressed air. (iii) Dry sweeping, shoveling or other dry clean-up of dust and debris containing ACM and PACM. (iv) Employee rotation as a means of reducing employee exposure to (4) Class I Requirements. In addition to the provisions of paragraphs (g) (1) and (2) of this section, the following engineering controls and work practices and procedures shall be used. (i) All Class I work, including the installation and operation of the control system shall be supervised by a competent person as defined in paragraph (b) of this section; (ii) For all Class I jobs involving the removal of more than 25 linear or 10 square feet of thermal system insulation or surfacing material; for all other Class I jobs, where the employer cannot produce a negative exposure assessment pursuant to paragraph (f)(2)(iii) of this section, or where employees are working in areas adjacent to the regulated area, while the Class I work is being performed, the employer shall use one of the following methods to ensure that airborne asbestos does not migrate from the regulated area: (A) Critical barriers shall be placed over all openings to the regulated area: (B) The employer shall use another barrier or isolation method which prevents the migration of airborne asbestos from the regulated area, as verified by perimeter area surveillance during each work shift at each boundary of the regulated area, showing no visible asbestos dust; and perimeter area monitoring showing that clearance levels contained in 40 CFR Part 763, Subpt. E, of the EPA Asbestos in Schools Rule are met, or that perimeter area levels, measured by (PCM) are no more than background levels representing the same area before the asbestos work began. The results of such monitoring shall be made known to the employer no later than 24 hours from the end of the work shift represented by such monitoring. (iii) For all Class I jobs, HVAC systems shall be isolated in the regulated area by sealing with a double layer of 6 mil plastic or the equivalent; (iv) For all Class I jobs, impermeable dropcloths shall be placed on surfaces beneath all removal activity; (v) For all Class I jobs, all objects within the regulated area shall be covered with impermeable dropcloths or plastic sheeting which is secured by duct tape or an equivalent. (vi) For all Class I jobs where the employer cannot produce a negative exposure assessment, or where exposure monitoring shows that a PEL is exceeded, the employer shall ventilate the regulated area to move contaminated air away from the breathing zone of employees toward a HEPA filtration or collection device. (5) Specific control methods for Class I work. In addition, Class I asbestos work shall be performed using one or more of the following control methods pursuant to the limitations stated below: (i) Negative Pressure Enclosure (NPE) systems: NPE systems shall be used where the configuration of the work area does not make the erection of the enclosure infeasible, with the following specifications and work practices. (A) Specifications: (1) The negative pressure enclosure (NPE) may be of any configuration, (2) At least 4 air changes per hour shall be maintained in the NPE, (3) A minimum of -0.02 column inches of water pressure differential, relative to outside pressure, shall be maintained within the NPE as evidenced by manometric measurements, (4) The NPE shall be kept under negative pressure throughout the period of its use, and (5) Air movement shall be directed away from employees performing asbestos work within the enclosure, and toward a HEPA filtration or a collection device. (B) Work Practices: (1) Before beginning work within the enclosure and at the beginning of each shift, the NPE shall be inspected for breaches and smoke-tested for leaks, and any leaks sealed. (2) Electrical circuits in the enclosure shall be deactivated, unless equipped with ground-fault circuit interrupters. (ii) Glove bag systems shall be used to remove PACM and/or ACM from straight runs of piping with the following specifications and work practices. (A) Specifications: (1) Glovebags shall be made of 6 mil thick plastic and shall be seamless at the bottom. (2) [Reserved] (B) Work Practices: (1) Each glovebag shall be installed so that it completely covers the circumference of pipe or other structure where the work is to be done. (2) Glovebags shall be smoke-tested for leaks and any leaks sealed prior to (3) Glovebags may be used only once and may not be moved. (4) Glovebags shall not be used on surfaces whose temperature exceeds (5) Prior to disposal, glovebags shall be collapsed by removing air within them using a HEPA vacuum. (6) Before beginning the operation, loose and friable material adjacent to the glovebag/box operation shall be wrapped and sealed in two layers of six mil plastic or otherwise rendered intact, (7) Where system uses attached waste bag, such bag shall be connected to collection bag using hose or other material which shall withstand pressure of ACM waste and water without losing its integrity: (8) Sliding valve or other device shall separate waste bag from hose to ensure no exposure when waste bag is disconnected: (9) At least two persons shall perform Class I glovebag removals. (iii) Negative Pressure Glove Bag Systems. Negative pressure glove bag systems shall be used to remove ACM or PACM from piping. (A) Specifications: In addition to specifications for glove bag systems above, negative pressure glove bag systems shall attach HEPA vacuum systems or other devices to bag to prevent collapse during removal. (B) Work Practices: (1) The employer shall comply with the work practices glove bag systems in paragraph (g)(5)(ii)(B)(2) of this section. (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run continually during the operation. (3) Where a separate waste bag is used along with a collection bag and discarded after one use, the collection bag may be reused if rinsed clean with amended water before reuse. (iv) Negative Pressure Glove Box Systems: Negative pressure glove boxes shall be used to remove ACM or PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove boxes shall be constructed with rigid sides and made from metal or other material which can withstand the weight of the ACM and PACM and water used during removal: (2) A negative pressure generator shall be used to create negative pressure in system: (3) An air filtration unit shall be attached to the box: (4) The box shall be fitted with gloved - (5) An aperture at the base of the box shall serve as a bagging outlet for waste ACM and water: - (6) A back-up generator shall be present on site: - (7) Waste bags shall consist of 6 mil thick plastic double-bagged before they are filled or plastic thicker than 6 mil. (B) Work practices: (1) At least two persons shall perform the removal: - (2) The box
shall be smoke tested prior to each use: - (3) Loose or damaged ACM adjacent to the box shall be wrapped and sealed in two layers of 6 mil plastic prior to the job, or otherwise made intact prior to (4) A HEPA filtration system shall be used to maintain pressure barrier in box. (v) Water Spray Process System. A water spray process system may be used for removal of ACM and PACM from cold line piping if, employees carrying out such process have completed a 40hour separate training course in its use, in addition to training required for employees performing Class I work. The system shall meet the following specifications and shall be performed byemployees using the following work practices. (A) Specifications: (1) Piping shall be surrounded on 3 sides by rigid framing, (2) A 360 degree water spray, delivered through nozzles supplied by a high pressure separate water line, shall be formed around the piping. (3) The spray shall collide to form a fine aerosol which provides a liquid barrier between workers and the ACM and PACM. (B) Work Practices: (1) The system shall be run for at least 10 minutes before removal begins. (2) All removal shall take place within the water barrier. (3) The system shall be operated by at least three persons, one of whom shall not perform removal, but shall check equipment, and ensure proper operation of the system. (4) After removal, the ACM and PACM shall be bagged while still inside the water barrier. (vi) A small walk-in enclosure which accommodates no more than two persons (mini-enclosure) may be used if the disturbance or removal can be completely contained by the enclosure with the following specifications and work practices. (A) Specifications: - (1) The fabricated or job-made enclosure shall be constructed of 6 mil plastic or equivalent: - (2) The enclosure shall be placed under negative pressure by means of a HEPA filtered vacuum or similar ventilation unit: (B) Work practices: - (1) Before use, the minienclosure shall be inspected for leaks and smoke tested to detect breaches, and breaches sealed. - (2) Before reuse, the interior shall be completely washed with amended water and HEPA-vacuumed.. - (3) During use air movement shall be directed away from the employee's breathing zone within the minienclosure. (6) Alternative control methods for Class I work. Class I work may be performed using a control method which is not referenced in paragraph (g)(5) of this section, or which modifies a control method referenced in paragraph (g)(5)of this section, if the following provisions are complied with: (i) The control method shall enclose, contain or isolate the processes or source of airborne asbestos dust, or otherwise capture or redirect such dust before it enters the breathing zone of emplovees. - (ii) Å certified industrial hygienist or licensed professional engineer who is also qualified as a project designer as defined in paragraph (b) of this section, shall evaluate the work area, the projected work practices and the engineering controls and shall certify in writing that the planned control method is adequate to reduce direct and indirect employee exposure to below the PELs under worst-case conditions of use, and that the planned control method will prevent asbestos contamination outside the regulated area, as measured by clearance sampling which meets the requirements of EPA's Asbestos in Schools rule issued under AHERA, or perimeter monitoring which meets the criteria in paragraph (g)(4)(i)(B)(2) of this section. - (A) Where the TSI or surfacing material to be removed is 25 linear or 10 square feet or less, the evaluation required in paragraph (g)(6) of this section may be performed by a "competent person", and may omit consideration of perimeter or clearance monitoring otherwise required. (B) The evaluation of employee exposure required in paragraph (g)(6) of this section, shall include and be based on sampling and analytical data representing employee exposure during the use of such method under worstcase conditions and by employees whose training and experience are equivalent to employees who are to perform the current job. (iii) Before work which involves the removal of more than 25 linear or 10 square feet of thermal system insulation or surfacing material is begun using an alternative method which has been the subject of a paragraph (g)(6) required evaluation and certification, the employer shall send a copy of such evaluation and certification to the national office of OSHA, Office of Technical Support, Room N3653, 200 Constitution Avenue, NW, Washington, (7) Work Practices and Engineering Controls for Class II work. (i) All Class II work, shall be supervised by a competent person as defined in paragraph (b) of this section. (ii) For all indoor Class II jobs, where the employer has not produced a negative exposure assessment pursuant to paragraph (f)(4)(iii) of this section, or where during the job changed conditions indicate there may be exposure above the PEL or where the employer does not remove the ACM in a substantially intact state, the employer shall use one of the following methods to ensure that airborne asbestos does not migrate from the regulated area; (A) Critical barriers shall be placed over all openings to the regulated area; or, (B) The employer shall use another barrier or isolation method which prevents the migration of airborne asbestos from the regulated area, as verified by perimeter area monitoring or clearance monitoring which meets the criteria set out in paragraph (g)(4)(i)(B)(2) of this section. (iii) Impermeable dropcloths shall be placed on surfaces beneath all removal activity; (iv) All Class II asbestos work shall be performed using the work practices and requirements set out above in paragraph (g)(3) (i) through (v) of this section. - (8) Additional Controls for Class II work. Class II asbestos work shall also be performed by complying with the work practices and controls designated for each type of asbestos work to be performed, set out in this paragraph. Where more than one control method may be used for a type of asbestos work, the employer may choose one or a combination of designated control methods. Class II work also may be performed using a method allowed for Class I work, except that glove bags and glove boxes are allowed if they fully enclose the Class II material to be removed. - (i) For removing vinyl and asphalt flooring materials which contain ACM or for which in buildings constructed no later than 1980, the employer has not verified the absence of ACM pursuant to paragraph (g)(8)(i)(f) of this section. The employer shall ensure that employees comply with the following work practices and that employees are trained in these practices pursuant to paragraph (k)(8): (A) Flooring or its backing shall not be sanded. - (B) Vacuums equipped with HEPA filter, disposable dust bag, and metal floor tool (no brush) shall be used to clean floors. - (C) Resilient sheeting shall be removed by cutting with wetting of the snip point and wetting during delamination. Rip-up of resilient sheet floor material is prohibited. (D) All scraping of residual adhesive and/or backing shall be performed using wet methods. (E) Dry sweeping is prohibited. (F) Mechanical chipping is prohibited unless performed in a negative pressure enclosure which meets the requirements of paragraph (g)(5)(iv) of this section. (G) Tiles shall be removed intect, unless the employer demonstrates that intact removal is not possible. (H) When tiles are heated and can be removed intact, wetting may be omitted. - (I) Resilient flooring material including associated mastic and backing shall be assumed to be asbestoscontaining unless an industrial hygienist determines that it is asbestosfree using recognized analytical techniques. - (ii) For removing roofing material which contains ACM the employer shall ensure that the following work practices are followed: - (A) Roofing material shall be removed in an intact state to the extent feasible. - (B) Wet methods shall be used where feasible. - (C) Cutting machines shall be continuously misted during use, unless a competent person determines that misting substantially decreases worker safety. (D) All loose dust left by the sawing operation must be HEPA vacuumed immediately. (E) Unwrapped or unbagged roofing material shall be immediately lowered to the ground via covered, dust-tight chute, crane or hoist, or placed in an impermeable waste bag or wrapped in plastic sheeting and lowered to ground no later than the end of the work shift. (F) Upon being lowered, unwrapped material shall be transferred to a closed receptacle in such manner so as to preclude the dispersion of dust. (G) Roof level heating and ventilation air intake sources shall be isolated or the ventilation system shall be shut down. (iii) When removing cementitious asbestos-containing siding and shingles or transite panels containing ACM, the employer shall ensure that the following work practices are followed: - (A) Cutting, abrading or breaking siding, shingles, or transite panels, shall be prohibited unless the employer can demonstrate that methods less likely to result in asbestos fiber release cannot be used. - (B) Each panel or shingle shall be sprayed with amended water prior to removal. - (C) Unwrapped or unbagged panels or shingles shall be immediately lowered to the ground via covered dust-tight chute, crane or hoist, or placed in an impervious waste bag or wrapped in plastic sheeting and lowered to the ground no later than the end of the work shift. (D) Nails shall be cut with flat, sharp instruments. (iv) When removing gaskets containing ACM, the employer shall ensure that the following work practices are followed: (A) If a gasket is visibly deteriorated and unlikely to be removed intact, removal shall be undertaken within a glovebag as described in paragraph (g)(5)(ii) of this section. (B) The gasket shall be thoroughly wetted with amended water prior to its
removal. (C) The wet gasket shall be immediately placed in a disposal container. (D) Any scraping to remove residue must be performed wet. - (v) When performing any other Class II removal of asbestos containing material for which specific controls have not been listed in paragraph (g)(8)(iv) (A) through (D) of this section, the employer shall ensure that the following work practices are complied with. - (A) The material shall be thoroughly wetted with amended water prior and during its removal. (B) The material shall be removed in an intact state unless the employer demonstrates that intact removal is not possible. (C) Cutting, abrading or breaking the material shall be prohibited unless the employer can demonstrate that methods less likely to result in asbestos fiber release are not feasible. (D) Asbestos-containing material removed, shall be immediately bagged or wrapped, or kept wetted until transferred to a closed receptacle, no later than the end of the work shift. - (vi) Alternative Work Practices and Controls. Instead of the work practices and controls listed in paragraph (g)(8) (i) through (v) of this section, the employer may use different or modified engineering and work practice controls if the following provisions are complied with. - (A) The employer shall demonstrate by data representing employee exposure during the use of such method under conditions which closely resemble the conditions under which the method is to be used, that employee exposure will not exceed the PELs under any anticipated circumstances. (B) A competent person shall evaluate the work area, the projected work practices and the engineering controls, and shall certify in writing, that the different or modified controls are adequate to reduce direct and indirect employee exposure to below the PELs under all expected conditions of use and that the method meets the requirements of this standard. The evaluation shall include and be based on data representing employee exposure during the use of such method under conditions which closely resemble the conditions under which the method is to be used for the current job, and by employees whose training and experience are equivalent to employees who are to perform the current job. (9) Work Practices and Engineering Controls for Class III asbestos work. Class III asbestos work shall be conducted using engineering and work practice controls which minimize the exposure to employees performing the asbestos work and to bystander employees: (i) The work shall be performed using wet methods. (ii) To the extent feasible, the work shall be performed using local exhaust ventilation. (iii) Where the disturbance involves drilling, cutting, abrading, sanding, chipping, breaking, or sawing of thermal system insulation or surfacing material, the employer shall use impermeable dropcloths, and shall isolate the operation using mini-enclosures or glove bag systems pursuant to paragraph (g)(5) of this section. (iv) Where the employer does not produce a "negative exposure assessment" for a job, or where monitoring results show the PEL has been exceeded, the employer shall contain the area using impermeable dropcloths and plastic barriers or their equivalent, or shall isolate the operation using a control system listed in and in compliance with paragraph (g)(5) of this section. (v) Employees performing Class III jobs, which involve the disturbance of thermal system insulation or surfacing material, or where the employer does not produce a "negative exposure assessment" or where monitoring results show a PEL has been exceeded, shall wear respirators which are selected, used and fitted pursuant to provisions of paragraph (h) of this section. (10) Class IV asbestos work. Class IV asbestos jobs shall be conducted by employees trained pursuant to the asbestos awareness training program set out in paragraph (k)(8) of this section. In addition, all Class IV jobs shall be conducted in conformity with the requirements set out in paragraph (g)(1) of this section, mandating wet methods, HEPA vacuums, and prompt clean up of debris containing ACM or PACM. (i) Employees cleaning up debris and waste in a regulated area where respirators are required shall wear respirators which are selected, used and fitted pursuant to provisions of paragraph (h) of this section. (ii) Employers of employees who clean up waste and debris in, and employers in control of, areas where friable thermal system insulation or surfacing material is accessible, shall assume that such waste and debris contain asbestos. (h) Respiratory protection—(1) General. The employer shall provide respirators, and ensure that they are used, where required by this section. Respirators shall be used in the following circumstances: (i) During all Class I asbestos jobs. - (ii) During all Class II work where the ACM is not removed in a substantially intact state, - (iii) During all Class II and III work which is not performed using wet methods. - (iv) During all Class II and III asbestos jobs where the employer does not produce a "negative exposure assessment". - (v) During all Class III jobs where TSI or surfacing ACM or PACM is being disturbed. - (vi) During all Class IV work performed within regulated areas where employees performing other work are required to wear respirators. (vii) During all work covered by this section where employees are exposed above the TWA or excursion limit. (viii) In emergencies. (2) Respirator selection. (i) Where respirators are used, the employer shall select and provide, at no cost to the employee, the appropriate respirator as specified in Table 1 in paragraph (h)(2)(iii) of this section, and shall ensure that the employee uses the respirator provided. (ii) The employer shall select respirators from among those jointly approved as being acceptable for protection by the Mine Safety and Health Administration (MSHA) and the National Institute for Occupational Safety and Health (NIOSH) under the provisions of 30 CFR Part 11. (iii) The employer shall provide a tight fitting powered, air-purifying respirator in lieu of any negativepressure respirator specified in Table 1 whenever: (A) An employee chooses to use this type of respirator; and (B) This respirator will provide adequate protection to the employee. TABLE 1.—RESPIRATORY PROTECTION FOR ASBESTOS FIBERS | Airborne concentra-
tion of asbestos or
conditions of use | Required respirator | |---|--| | Not in excess of 1 f/
cc (10 X PEL), or
otherwise as re-
quired independent
of exposure pursu-
ant to (h)(2)(iv).
Not in excess of 5 f/
cc (50 X PEL). | Half-mask air purify- ing respirator other than a disposable respirator, equipped with high efficiency filters. Full facepiece air-pu- rifying respirator equipped with high efficiency filters. | | Not in excess of 10 f/
cc (100 X PEL). | Any powered air-puri-
fying respirator
equipped with high
efficiency filters or
any supplied air
respirator operated
in continuous flow
mode. | | Not in excess of 100 f/cc (1,000 X PEL). | Full facepiece sup-
plied air respirator
operated in pres-
sure demand
mode. | | Greater than 100 f/cc
(1,000 X PEL) or
unknown con-
centration. | Full facepiece sup-
plied air respirator
operated in pres-
sure demand
mode, equipped
with an auxiliary
positive pressure
self-contained | NOTE: a. Respirators assigned for high environmental concentrations may be used at lower concentrations, or when required res-pirator use is independent of concentration. b. A high efficiency filter means a filter that breathing appara- is at least 99.97 percent efficient against mono-dispersed particles of 0.3 micrometers in diameter or larger. (iv) In addition to the above selection criterion, the employer shall provide a half-mask air purifying respirator, other than a disposable respirator, equipped with high efficiency filters whenever the employee performs the following activities: Class II and III asbestos jobs where the employer does not produce a negative exposure assessment; and Class III jobs where TSI or surfacing ACM or PACM is being disturbed. (v) In addition to the above selection criteria, the employer shall provide a full facepiece supplied air respirator operated in the pressure demand mode equipped with an auxiliary positive pressure self-contained breathing apparatus for all employees within the regulated area where Class I work is being performed for which a negative exposure assessment has not been produced. (3) Respirator program. (i) Where respiratory protection is used; the employer shall institute a respirator program in accordance with 29 CFR 1910.134(b), (d), (e), and (f). (ii) The employer shall permit each employee who uses a filter respirator to change the filter elements whenever an increase in breathing resistance is detected and shall maintain an adequate supply of filter elements for this purpose. (iii) Employees who wear respirators shall be permitted to leave work areas to wash their faces and respirator facepieces whenever necessary to prevent skin irritation associated with respirator use. (iv) No employee shall be assigned to tasks requiring the use of respirators if, based on his or her most recent examination, an examining physician determines that the employee will be unable to function normally wearing a respirator, or that the safety or health of the employee or of other employees will be impaired by the use of a respirator. Such employee shall be assigned to another job or given the opportunity to transfer to a different position the duties of which
he or she is able to perform with the same employer, in the same geographical area, and with the same seniority, status, and rate of pay and other job benefits he or she had just prior to such transfer, if such a different position is available. (4) Respirator fit testing. (i) The employer shall ensure that the respirator issued to the employee exhibits the least possible facepiece leakage and that the respirator is fitted properly. (ii) Employers shall perform either quantitative or qualitative face fit tests at the time of initial fitting and at least every 6 months thereafter for each employee wearing a negative-pressure respirator. The qualitative fit tests may be used only for testing the fit of halfmask respirators where they are permitted to be worn, or of fullfacepiece air purifying respirators where they are worn at levels at which halffacepiece air purifying respirators are permitted. Qualitative and quantitative fit tests shall be conducted in accordance with Appendix C. The tests shall be used to select facepieces that provide the required protection as prescribed in Table 1 in paragraph (h)(2)(iii) of this section. (i) Protective clothing—(1) General. The employer shall provide and require the use of protective clothing, such as coveralls or similar whole-body clothing, head coverings, gloves, and foot coverings for any employee exposed to airborne concentrations of asbestos that exceed the TWA and/or excursion limit prescribed in paragraph (c) of this section, or for which a required negative exposure assessment is not produced, and for any employee performing Class I operations which involve the removal of over 25 linear or 10 square feet of TSI or surfacing ACM and PACM. (2) Laundering. (i) The employer shall ensure that laundering of contaminated clothing is done so as to prevent the release of airborne asbestos in excess of the TWA or excursion limit prescribed in paragraph (c) of this section. (ii) Any employer who gives contaminated clothing to another person for laundering shall inform such person of the requirement in paragraph (i)(2)(i) of this section to effectively prevent the release of airborne asbestos in excess of the TWA and excursion limit prescribed in paragraph (c) of this section. (3) Contaminated clothing. Contaminated clothing shall be transported in sealed impermeable bags, or other closed, impermeable containers, and be labeled in accordance with paragraph (k) of this section. (4) Inspection of protective clothing. (i) The competent person shall examine worksuits worn by employees at least once per workshift for rips or tears that may occur during performance of work. (ii) When rips or tears are detected while an employee is working, rips and tears shall be immediately mended, or the worksuit shall be immediately replaced. (j) Hygiene facilities and practices for employees. (1) Requirements for employees performing Class I asbestos jobs involving over 25 linear or 10 square feet of Tsi or surfacing ACM and PACM. (i) Decontamination areas: the employer shall establish a decontamination area that is adjacent and connected to the regulated area for the decontamination of such employees. The decontamination area shall consist of an equipment room, shower area, and clean room in series. The employer shall ensure that employees enter and exit the regulated area through the decontamination area. (A) Equipment room. The equipment room shall be supplied with impermeable, labeled bags and containers for the containment and disposal of contaminated protective equipment. (B) Shower area. Shower facilities shall be provided which comply with 29 CFR 1910.141(d)(3), unless the employer can demonstrate that they are not feasible. The showers shall be adjacent both to the equipment room and the clean room, unless the employer can demonstrate that this location is not feasible. Where the employer can demonstrate that it is not feasible to locate the shower between the equipment room and the clean room, or where the work is performed outdoors, the employers shall ensure that employees: (1) Remove asbestos contamination from their worksuits in the equipment room using a HEPA vacuum before proceeding to a shower that is not adjacent to the work area; or (2) Remove their contaminated worksuits in the equipment room, then don clean worksuits, and proceed to a shower that is not adjacent to the work area. - (C) Clean change room. The clean room shall be equipped with a locker or appropriate storage container for each employee's use. When the employer can demonstrate that it is not feasible to provide a clean change area adjacent to the work area or where the work is performed outdoors, the employer may permit employees engaged in Class I asbestos jobs to clean their protective clothing with a portable HEPAequipped vacuum before such employees leave the regulated area. Such employees however must then change into street clothing in clean change areas provided by the employer which otherwise meet the requirements of this section. - (ii) Decontamination area entry procedures. The employer shall ensure that employees: (A) Enter the decontamination area through the clean room; (B) Remove and deposit street clothing within a locker provided for their use; and (C) Put on protective clothing and respiratory protection before leaving the clean room. - (D) Before entering the regulated area, the employer shall ensure that employees pass through the equipment room. - (iii) Decontamination area exit procedures. The employer shall ensure that: - (A) Before leaving the regulated area, employees shall remove all gross contamination and debris from their protective clothing. (B) Employees shall remove their protective clothing in the equipment room and deposit the clothing in labeled impermeable bags or containers. (C) Employees shall not remove their respirators in the equipment room. (D) Employees shall shower prior to entering the clean room. (E) After showering, employees shall enter the clean room before changing into street clothes. (iv) Lunch Areas. Whenever food or beverages are consumed at the worksite where employees are performing Class I asbestos work, the employer shall provide lunch areas in which the airborne concentrations of asbestos are below the permissible exposure limit and/or excursion limit. (2) Requirements for Class I work involving less than 25 linear or 10 square feet of TSI or surfacing ACM and PACM, and for Class II and Class III asbestos work operations where exposures exceed a PEL or where there is no negative exposure assessment produced before the operation. (i) The employer shall establish an equipment room or area that is adjacent to the regulated area for the decontamination of employees and their equipment which is contaminated with asbestos which shall consist of an area covered by a impermeable drop cloth on the floor or horizontal working surface. (ii) The area must be of sufficient size as to accommodate cleaning of equipment and removing personal protective equipment without spreading contamination beyond the area (as determined by visible accumulations). (iii) Workclothing must be cleaned with a HEPA vacuum before it is removed. (iv) All equipment and surfaces of containers filled with ACM must be cleaned prior to removing them from the equipment room or area. (v) The employer shall ensure that employees enter and exit the regulated area through the equipment room or (3) Requirements for Class IV work. Employers shall ensure that employees performing Class IV work within a regulated area comply with the hygiene practice required of employees performing work which has a higher classification within that regulated area. Otherwise employers of employees cleaning up debris and material which is TSI or surfacing ACM or identified as PACM shall provide decontamination facilities for such employees which are required by paragraph (j)(2) of this section. (4) Smoking in work areas. The employer shall ensure that employees do not smoke in work areas where they are occupationally exposed to asbestos because of activities in that work area. (k) Communication of hazards. NOTE: This section applies to the communication of information concerning asbestos hazards in construction activities to facilitate compliance with this standard. Most asbestos-related construction activities involve previously installed building materials. Building owners often are the only and/or best sources of information concerning them. Therefore, they, along with employers of potentially exposed employees, are assigned specific information conveying and retention duties under this section. Installed Asbestos Containing Building Material. Employers and building owners are required to treat TSI and sprayed or troweled on surfacing materials in buildings as asbestos-containing, unless they determine in compliance with paragraph (k)(4) of this section that the material is not asbestos-containing. Asphalt and vinyl flooring material installed no later than 1980 must also be considered as asbestos containing unless the employer, pursuant to paragraph (g) of this section determines that it is not asbestos-containing. If the employer/building owner has actual knowledge, or should have known through the exercise of due diligence, that other materials are asbestoscontaining, they too must be treated as such. When communicating information to employees pursuant to this standard, owners and employers shall identify "PACM" as ACM. Additional requirements relating to communication of asbestos work on multi-employer worksites are set out in paragraph (d) of this section. (1) Duties of building and facility owners. (i) Before work subject to this standard is begun, building and facility owners shall identify the presence, location and quantity of ACM, and/or PACM at the work site. All thermal system insulation and sprayed on or troweled on surfacing m2aterials in buildings or substrates constructed no later than 1980 shall
also be identified as asbestos-containing. In addition resilient flooring material installed not later than 1980 shall also be identified as asbestos-containing. as asbestos-containing. (ii) Building and/or facility owners shall notify the following persons of the presence, location and quantity of ACM or PACM, at the work sites in their buildings and facilities. Notification either shall be in writing, or shall consist of a personal communication between the owner and the person to whom notification must be given or their authorized representatives: (A) Prospective employers applying or bidding for work whose employees reasonably can be expected to work in or adjacent to areas containing such material; (B) Employees of the owner who will work in or adjacent to areas containing such material: (C) On multi-employer worksites, all employers of employees who will be performing work within or adjacent to areas containing such materials; (D) Tenants who will occupy areas containing such material. (2) Duties of employers whose employees perform work subject to this standard in or adjacent to areas containing ACM and PACM. Building/facility owners whose employees perform such work shall comply with these provisions to the extent applicable. (i) Before work in areas containing ACM and PACM is begun; employers shall identify the presence, location, and quantity of ACM, and/or PACM therein. (ii) Before work under this standard is performed employers of employees who will perform such work shall inform the following persons of the location and quantity of ACM and/or PACM present in the area and the precautions to be taken to insure that airborne asbestos is confined to the area. (A) Owners of the building/facility; (B) Employees who will perform such work and employers of employees who work and/or will be working in adjacent areas. (iii) Within 10 days of the completion of such work, the employer whose employees have performed work subject to this standard, shall inform the building/facility owner and employers of employees who will be working in the area of the current location and quantity of PACM and/or ACM remaining in the area and final monitoring results, if any. (3) In addition to the above requirements, all employers who discover ACM and/or PACM on a worksite shall convey information concerning the presence, location and quantity of such newly discovered ACM and/or PACM to the owner and to other employers of employees working at the work site, within 24 hours of the discovery (4) Criteria to rebut the designation of installed material as PACM. (i) At any time, an employer and/or building owner may demonstrate, for purposes of this standard, that PACM does not contain asbestos. Building owners and/ or employers are not required to communicate information about the presence of building material for which such a demonstration pursuant to the requirements of paragraph (k)(4)(ii) of this section has been made. However, in all such cases, the information, data and analysis supporting the determination that PACM does not contain asbestos, shall be retained pursuant to paragraph (n) of this section. (ii) An employer or owner may demonstrate that PACM does not contain asbestos by the following: (A) Having an completed inspection conducted pursuant to the requirements of AHERA (40 CFR Part 763, Subpart E) which demonstrates that the material is not ACM; (B) Performing tests of the material containing PACM which demonstrate that no asbestos is present in the material. Such tests shall include analysis of 3 bulk samples of each homogeneous area of PACM collected in a randomly distributed manner. The tests, evaluation and sample collection shall be conducted by an accredited inspector or by a CIH. Analysis of samples shall be performed by persons or laboratories with proficiency demonstrated by current successful participation in a nationally recognized testing program such as the National Voluntary Laboratory Accreditation Program (NVLAP) of the National Institute for Standards and Technology (NIST) of the Round Robin for bulk samples administered by the American Industrial Hygiene Association (AIHA) or an equivalent nationally-recognized round robin testing program. (5) At the entrance to mechanical rooms/areas in which employees reasonably can be expected to enter and which contain thermal system insulation and surfacing ACM/PACM, the building owner shall post signs which identify the material which is present, its location, and appropriate work practices which, if followed, will ensure that ACM and/or PACM will not be disturbed. (6) Signs. (i) Warning signs that demarcate the regulated area shall be provided and displayed at each location where a regulated area is required to be established by paragraph (e) of this section. Signs shall be posted at such a distance from such a location that an employee may read the signs and take necessary protective steps before entering the area marked by the signs. (ii) The warning signs required by (k)(6) of this section shall bear the following information. DANGER ASBESTOS CANCER AND LUNG DISEASE HAZARD AUTHORIZED PERSONNEL ONLY ESPIRATORS AND PROTECTION CLOTHING ARE REQUIRED IN THIS RESPIRATORS (7) Labels. (i) Labels shall be affixed to all products containing asbestos and to all containers containing such products, including waste containers. Where feasible, installed asbestos products shall contain a visible label. (ii) Labels shall be printed in large, bold letters on a contrasting background. (iii) Labels shall be used in accordance with the requirements of 29 CFR 1910.1200(f) of OSHA's Hazard Communication standard, and shall contain the following information: DANGER **CONTAINS ASBESTOS FIBERS** AVOID CREATING DUST CANCER AND LUNG DISEASE HAZARD (iv) [Reserved] (v) Labels shall contain a warning statement against breathing asbestos (vi) The provisions for labels required by paragraphs (k)(2)(i) through (k)(2)(iii) do not apply where: (A) Asbestos fibers have been modified by a bonding agent, coating, binder, or other material, provided that the manufacturer can demonstrate that, during any reasonably foreseeable use, handling, storage, disposal, processing, or transportation, no airborne concentrations of asbestos fibers in excess of the permissible exposure limit and/or excursion limit will be released. (B) Asbestos is present in a product in concentrations less than 1.0 percent by weight. (vii) When a building owner/or employer identifies previously installed PACM and/or ACM, labels or signs shall be affixed or posted so that employees will be notified of what materials contain PACM and/or ACM. The employer shall attach such labels in areas where they will clearly be noticed by employees who are likely to be exposed, such as at the entrance to mechanical room/areas. Signs required by paragraph (k)(5) of this section may be posted in lieu of labels so long as they contain information required for labelling. (8) Employee information and training. (i) The employer shall, at no cost to the employee, institute a training program for all employees who install asbestos containing products and for all employees who perform Class I through IV asbestos operations, and shall ensure their participation in the program. (ii) Training shall be provided prior to or at the time of initial assignment and at least annually thereafter. (iii) Training for Class I and II operations shall be the equivalent in curriculum, training method and length to the EPA Model Accreditation Plan (MAP) asbestos abatement worker training (40 CFR Part 763, Subpart E, Appendix C.). For employers whose Class II work with asbestos-containing material involves only the removal and/ or disturbance of one generic category of building material, such as roofing materials, flooring materials, siding materials or transite panels, instead, such employer is required to train employees who perform such work by providing a training course which includes as a minimum all the elements included in paragraph (k)(8)(vi) of this section and in addition, the specific work practices and engineering controls set forth in paragraph (g) which specifically relate to that category. Such course shall include "hands-on" training and shall take at least 8 hours. (iv) Training for Class III employees shall be the equivalent in curriculum and training method to the 16-hour Operations and Maintenance course developed by EPA for maintenance and custodial workers who conduct activities that will result in the disturbance of ACM. [See 40 CFR 763.92(a)(2)]. Such course shall include "hands-on" training in the use of respiratory protection and work practices and shall take at least 16 hours. (v) Training for employees performing Class IV operations shall be the equivalent in curriculum and training method to the awareness training course developed by EPA for maintenance and custodial workers who work in buildings containing asbestoscontaining material. [See 40 CFR 763.92 (a)(1)]. Such course shall include available information concerning the locations of PACM and ACM, and asbestos-containing flooring material, or flooring material where the absence of asbestos has not been certified; and instruction in recognition of damage, deterioration, and delamination of asbestos containing building materials. Such a course shall take at least 2 hours. (vi) The training program shall be conducted in a manner that the employee is able to understand. In addition to the content required by provisions in paragraph (k)(8)(iii) of this section, the employer shall ensure that each such employee is informed of the (A) Methods of recognizing asbestos, including the requirement in paragraph (k)(1) of this section to presume that certain building materials contain asbestos; (B) The health effects associated with asbestos exposure; (C) The relationship between smoking and asbestos in producing lung cancer; (D) The nature of operations that could result in exposure to
asbestos, the importance of necessary protective controls to minimize exposure including, as applicable, engineering controls, work practices, respirators, housekeeping procedures, hygiene facilities, protective clothing, decontamination procedures, emergency procedures, and waste disposal procedures, and any necessary instruction in the use of these controls and procedures; including where Class III and IV work is performed, the contents of "Managing Asbestos In Place (EPA 20T-2003, July 1990) or its equivalent in content. (E) The purpose, proper use, fitting instructions, and limitations of respirators as required by 29 CFR 1910.134; (F) The appropriate work practices for performing the asbestos job; (G) Medical surveillance program requirements; and (H) The content of this standard. including appendices. (I) The names, addresses and phone numbers of public health organizations which provide information, materials and/or conduct programs concerning smoking cessation. The employer may distribute the list of such organizations contained in Appendix J to this section, to comply with this requirement. (J) The requirements for posting signs and affixing labels and the meaning of the required legends for such signs and labels. (9) Access to training materials. (i) The employer shall make readily available to affected employees without cost, written materials relating to the employee training program, including a copy of this regulation. (ii) The employer shall provide to the Assistant Secretary and the Director, upon request, all information and training materials relating to the employee information and training prograin. (iii) The employer shall inform all employees concerning the availability of self-help smoking cessation program material. Upon employee request, the employer shall distribute such material, consisting of NIH Publication No, 89–1647, or equivalent self-help material, which is approved or published by a public health organization listed in Appendix J to this section. (I) Housekeeping—(1) Vacuuming. Where vacuuming methods are selected, HEPA filtered vacuuming equipment must be used. The equipment shall be used and emptied in a manner that minimizes the reentry of asbestos into the workplace. (2) Waste disposal. Asbestos waste, scrap, debris, bags, containers, equipment, and contaminated clothing consigned for disposal shall be collected and disposed of in sealed, labeled, impermeable bags or other closed, labeled, impermeable containers. (3) Care of asbestos-containing flooring material. (i) All vinyl and asphalt flooring material shall be maintained in accordance with this paragraph unless the building/facility owner demonstrates, pursuant to paragraph (g) of this section that the flooring does not contain asbestos. (i) Sanding of flooring material is prohibited. (ii) Stripping of finishes shall be conducted using low abrasion pads at speed lower than 300 rpm and wet methods. (iii) Burnishing or dry buffing may be performed only on flooring which has sufficient finish so that the pad cannot contact the flooring material. (4) Dust and debris in an area containing accessible thermal system insulation or surfacing material or visibly deteriorated ACM: (i) shall not be dusted or swept dry, or vacuumed without using a HEPA niter (ii) shall be promptly clean up and disposed in leak tight containers. (m) Medical surveillance—(1) General—(i) Employees covered. The employer shall institute a medical surveillance program for all employees who for a combined total of 30 or more days per year are engaged in Class I, II and III work or are exposed at or above the permissible exposure limit or excursion limit, and for employees who wear negative pressure respirators pursuant to the requirements of this section. (ii) Examination by a physician. (A) The employer shall ensure that all medical examinations and procedures are performed by or under the supervision of a licensed physician, and are provided at no cost to the employee and at a reasonable time and place. (B) Persons other than such licensed physicians who administer the pulmonary function testing required by this section shall complete a training course in spirometry sponsored by an appropriate academic or professional institution. (2) Medical examinations and consultations-(i) Frequency. The employer shall make available medical examinations and consultations to each employee covered under paragraph (m)(1)(i) of this section on the following schedules: (A) Prior to assignment of the employee to an area where negative-pressure respirators are worn; (B) When the employee is assigned to an area where exposure to asbestos may be at or above the permissible exposure for 30 or more days per year, a medical examination must be given within 10 working days following the thirtieth day of exposure; (C) And at least annually thereafter. (D) If the examining physician determines that any of the examinations should be provided more frequently than specified, the employer shall provide such examinations to affected employees at the frequencies specified by the physician. (E) Exception: No medical examination is required of any employee if adequate records show that the employee has been examined in accordance with this paragraph within the past 1-year period. (ii) Content. Medical examinations made available pursuant to paragraphs (m)(2)(i)(A) through (m)(2)(i)(C) of this section shall include: (A) A medical and work history with special emphasis directed to the pulmonary, cardiovascular, and gastrointestinal systems. (B) On initial examination, the standardized questionnaire contained in Part 1 of Appendix D to this section, and, on annual examination, the abbreviated standardized questionnaire contained in Part 2 of Appendix D to this section. (C) A physical examination directed to the pulmonary and gastrointestinal systems, including a chest roentgenogram to be administered at the discretion of the physician, and pulmonary function tests of forced vital capacity (FVC) and forced expiratory volume at one second (FEV(1)). Interpretation and classification of chest shall be conducted in accordance with Appendix E to this section. (D) Any other examinations or tests deemed necessary by the examining physician. (3) Information provided to the physician. The employer shall provide the following information to the examining physician: (i) A copy of this standard and Appendices D. E. G, and I to this section (ii) A description of the affected employee's duties as they relate to the employee's exposure; (iii) The employee's representative exposure level or anticipated exposure level; (iv) A description of any personal protective and respiratory equipment used or to be used; and (v) Information from previous medical examinations of the affected employee that is not otherwise available to the examining physician. (4) Physician's written opinion. (i) The employer shall obtain a written opinion from the examining physician. This written opinion shall contain the results of the medical examination and shall include: (A) The physician's opinion as to whether the employee has any detected medical conditions that would place the employee at an increased risk of material health impairment from exposure to asbestos; (B) Any recommended limitations on the employee or on the use of personal protective equipment such as respirators; and (C) A statement that the employee has been informed by the physician of the results of the medical examination and of any medical conditions that may result from asbestos exposure. (D) A statement that the employee has been informed by the physician of the increased risk of lung cancer attributable to the combined effect of smoking and asbestos exposure. (ii) The employer shall instruct the physician not to reveal in the written opinion given to the employer specific findings or diagnoses unrelated to occupational exposure to asbestos. (iii) The employer shall provide a copy of the physician's written opinion to the affected employee within 30 days from its receipt. - (n) Recordkeeping—(1) Objective data relied on pursuant to paragraph (f) to this section. (i) Where the employer has relied on objective data that demonstrate that products made from or containing asbestos are not capable of releasing fibers of asbestos in concentrations at or above the permissible exposure limit and/or excursion limit under the expected conditions of processing, use, or handling to satisfy the requirements of paragraph (f), the employer shall establish and maintain an accurate record of objective data reasonably relied upon in support of the exemption. - (ii) The record shall include at least the following information: - (A) The product qualifying for exemption; - (B) The source of the objective data; - (C) The testing protocol, results of testing, and/or analysis of the material for the release of asbestos; - (D) A description of the operation exempted and how the data support the exemption; and - (E) Other data relevant to the operations, materials, processing, or employee exposures covered by the exemption. (iii) The employer shall maintain this record for the duration of the employer's reliance upon such objective data. (2) Exposure measurements. (i) The employer shall keep an accurate record of all measurements taken to monitor employee exposure to asbestos as prescribed in paragraph (f) of this section. NOTE: The employer may utilize the services of competent organizations such as industry trade associations and employee associations upon written request, shall make all - to maintain the records required by this - (ii) This record shall include at least the following information: - (A) The date of measurement; - (B) The operation involving exposure to asbestos that is being monitored; - (C) Sampling and analytical methods used and evidence of their accuracy; - (D) Number, duration, and results of samples taken; - (E) Type of protective devices worn, if any; and
- (F) Name, social security number, and exposure of the employees whose exposures are represented. - (iii) The employer shall maintain this record for at least thirty (30) years, in accordance with 29 CFR 1910.20. - (3) Medical surveillance. (i) The employer shall establish and maintain an accurate record for each employee subject to medical surveillance by paragraph (m) of this section, in accordance with 29 CFR 1910.20. - (ii) The record shall include at least the following information: - (A) The name and social security number of the employee; - (B) A copy of the employee's medical examination results, including the medical history, questionnaire responses, results of any tests, and physician's recommendations. - (C) Physician's written opinions; (D) Any employee medical complaints related to exposure to asbestos; and - (E) A copy of the information provided to the physician as required by paragraph (m) of this section. - (iii) The employer shall ensure that this record is maintained for the duration of employment plus thirty (30) years, in accordance with 29 CFR 1910.20. - (4) Training records. The employer shall maintain all employee training records for one 1 year beyond the last date of employment by that employer. - (5) Data to Rebut PACM. Where the building owner and employer have relied on data to demonstrate that PACM is not asbestos-containing, such data shall be maintained far as long as they are relied upon to rebut the presumption. - (6) Records of Required Notifications. Where the building owner has communicated and received information concerning the identification, location and quantity of ACM and PACM, written records of such notifications and their content shall be maintained by the building owner for the duration of ownership and shall be transferred to successive owners of such buildings/facilities. - (7) Availability. (i) The employer, - records required to be maintained by this section available to the Assistant Secretary and the Director for examination and copying. - (ii) The employer, upon request, shall make any exposure records required by paragraphs (f) and (n) of this section available for examination and copying to affected employees, former employees, designated representatives and the Assistant Secretary, in accordance with 29 CFR 1910.20(a) through (e) and (g) through (i). - (iii) The employer, upon request, shall make employee medical records required by paragraphs (m) and (n) of this section available for examination and copying to the subject employee. anyone having the specific written consent of the subject employee, and the Assistant Secretary, in accordance with 29 CFR 1910.20. - (8) Transfer of records. (i) The employer shall comply with the requirements concerning transfer of records set forth in 29 CFR 1910.20 (h). - (ii) Whenever the employer ceases to do business and there is no successor employer to receive and retain the records for the prescribed period, the employer shall notify the Director at least 90 days prior to disposal and, upon request, transmit them to the Director. - (o) Competent person—(1) General. On all construction worksites covered by this standard, the employer shall designate a competent person, having the qualifications and authorities for ensuring worker safety and health required by Subpart C. General Safety and Health Provisions for Construction (29 CFR 1926.20 through 1926.32). - (2) Required Inspections by the Competent Person. Section 1926.20(b)(2) which requires health and safety prevention programs to provide for frequent and regular inspections of the job sites, materials, and equipment to be made by competent persons, is incorporated. - (3) Additional Inspections. In addition, the competent person shall make frequent and regular inspections of the job sites, in order to perform the duties set out below in paragraph (p)(3)(i) and (ii) of this section. For Class I jobs, on-site inspections shall be made at least once during each work shift, and at any time at employee request. For Class II and III jobs, on-site inspections shall be made at intervals sufficient to assess whether conditions have changed, and at any reasonable time at employee request. - (i) On all worksites where employees are engaged in Class I or II asbestos work, the competent person designated in accordance with paragraph (g)(1) of this section shall perform or supervise the following duties, as applicable: (A) Set up the regulated area, enclosure, or other containment; (B) Ensure (by on-site inspection) the integrity of the enclosure or containment; (C) Set up procedures to control entry to and exit from the enclosure and/or (D) Supervise all employee exposure monitoring required by this section and ensure that it is conducted as required by paragraph (f) of this section; (È) Ensure that employees working within the enclosure and/or using glove bags wear protective clothing and respirators as required by paragraphs (h) and (i) of this section; (F) Ensure through on-site supervision, that employees set up and remove engineering controls, use work practices and personal protective equipment in compliance with all requirements; (G) Ensure that employees use the hygiene facilities and observe the decontamination procedures specified in paragraph (j) of this section; (H) Ensure that though on-site inspection engineering controls are functioning properly and employees are using proper work practices; and, (I) Ensure that notification requirement in paragraph (f)(6) of this section are met. (4) Training for the competent person. (i) For Class I, and II asbestos work the competent person shall be trained in all aspects of asbestos removal and handling, including: abatement, installation, removal and handling; the contents of this standard; the identification of asbestos; removal procedures, where appropriate; and other practices for reducing the hazard. Such training shall be obtained in a comprehensive course for supervisors, such as a course conducted by an EPA or state-approved training provider, certified by the EPA or a State, or an course equivalent in stringency, content and length. (ii) For Class III and IV asbestos work, the competent person shall be trained in aspects of asbestos handling appropriate for the nature of the work, to include procedures for setting up glove bags and mini-enclosures, practices for reducing asbestos exposures, use of wet methods, the contents of this standard, and the identification of asbestos. Such training shall include successful completion of a course equivalent in curriculum and training method to the 16-hour Operations and Maintenance course developed by EPA for maintenance and custodial workers [See 40 CFR] and the state of the Salt of the re- 763.92(a)(2)), or its equivalent in stringency, content and length. Competent persons for Class III and IV work, may also be trained pursuant to the requirements of paragraph (o)(4)(i) of this section. (p) Appendices. (1) Appendices A, C, D, and E to this section are incorporated as part of this section and the contents of these appendices are mandatory. (2) Appendices B, F, H, I, J, and K to this section are informational and are not intended to create any additional obligations not otherwise imposed or to detract from any existing obligations. (q) Dates. (1) This standard shall become effective October 11, 1994. (2) The provisions of 29 CFR 1926.58 remain in effect until the start-up dates of the equivalent provisions of this standard. (3) Start-up dates: All obligations of this standard commence on the effective date except as follows: (i) Methods of compliance. The engineering and work practice controls required by paragraph (g) of this section shall be implemented as soon as possible but no later than April 10, 1995. (ii) Respiratory protection. Respiratory protection required by paragraph (h) of this section shall be provided as soon as possible but no later than February 8, 1995. (iii) Hygiene facilities and practices for employees. Hygiene facilities and practices required by paragraph (j) of this section shall be provided as soon as possible but no later than February 8, 1995. (iv) Communication of hazards. Identification, notification, labeling and sign posting, and training required by paragraph (k) of this section shall be provided as soon as possible, but no later than April 10, 1995. (v) Housekeeping. Housekeeping practices and controls required by paragraph (l) of this section shall be provided as soon as possible, but no later than January 9, 1995. (vi) Medical surveillance required by paragraph (m) of this section shall be provided as soon as possible, but no later than January 9, 1995. (vii) The designation and training of competent persons required by paragraph (o) of this section shall completed as soon as possible but no later than April 10, 1995. (Approved by the Office of Management and Budget under control number 1218–0133) # Appendix A to § 1926.1101 [Amended] 4. Appendix A to § 1926.1101 is amended by the revising the second sentence of the introductory paragraph to read as follows: * * The sampling and analytical methods described below represent the elements of the available monitoring methods (such as Appendix B of this regulation, the most current version of the OSHA method ID-160, or the most current version of the NIOSH Method 7400). * * * # Appendix A to § 1926.1101 [Amended] 5. Paragraph 2. of the section of Appendix A to § 1926.1101 entitled Sampling and Analytical Procedure is amended by adding the following sentence to the end: 2.* * * Do not reuse or reload cassettes for asbestos sample collection. # Appendix A to § 1926.1101 [Amended] * 6. Paragraph 11 of the section of Appendix A to § 1926.1101 entitled Sampling and Analytical Procedure is revised to read as follows: 11. Each set of samples taken will include 10% field blanks or a minimum of 2 field blanks. These blanks must come from the same lot as the filters used for sample collection. The
field blank results shall be averaged and subtracted from the analytical results before reporting. A set consists of any sample or group of samples for which an evaluation for this standard must be made. Any samples represented by a field blank having a fiber count in excess of the detection limit of the method being used shall be rejected. # Appendix A to § 1926.1101 [Amended] 7. Paragraph 2 of the section of Appendix A to § 1926.1101 entitled Quality Control Procedures is redesignated as paragraph 2a and by adding paragraph 2b to read as follows: 2. * * * b. All laboratories should also participate in a national sample testing scheme such as the Proficiency Analytical Testing Program (PAT), or the Asbestos Registry sponsored by the American Industrial Hygiene Association (AIHA). E. Appendix B of § 1926.1101 is revised to read as follows: Appendix B to § 1926.1101. Sampling and Analysis. Non-mandatory | | • | | | | | | | | Air - | |---|-----------------|-------------|-------------|---------------------------------------|------------|---------------|------------|------------|-------------------| | Matrix: | | | ···· | | | | | ···· | | | OSHA Permissible Exposure Limit | s: | | | , | | | | | | | | | ••••• | | · · · · · · · · · · · · · · · · · · · | ••••• | | | ••••• | 0.1 fiber/cc | | Time Weighted Average
Excursion Level (30 minutes) | ····· | | | | •••••• | | | ••••• | 1.0 fiber/cc | | Collection Procedure: | | | | | | | | | | | A known volume of air is drawn through an electrically conductive 50-mn bers/mm2 on the filter. | | | | | | | | | | | an electrically conductive 50-mn | | | | | | | | | | | an electrically conductive 50-mn
bers/mm2 on the filter. | n extension cov | vl. The san | npling time | and rate | are chosen | to give a fib | er density | of between | n 100 to 1,300 | | an electrically conductive 50-mn
bers/mm2 on the filter. | | vl. The san | npling time | and rate | are chosen | to give a fib | er density | of between | | | an electrically conductive 50-mn bers/mm2 on the filter. Recommended Sampling Rate Recommended Air Volumes: | n extension cov | vl. The san | npling time | and rate | are chosen | to give a fib | er density | of between | 0.5 to 5.0 liters | | bers/mm2 on the filter. | n extension cov | vl. The san | npling time | and rate | are chosen | to give a fib | er density | of between | 0.5 to 5.0 liter | Analytical Procedure: A portion of the sample filter is cleared and prepared for asbestos fiber counting by Phase Contrast Microscopy (PCM) at 400X. Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources can be substituted. #### 1. Introduction This method describes the collection of airborne asbestos fibers using calibrated sampling pumps with mixed-cellulose ester (MCE) filters and analysis by phase contrast microscopy (PCM). Some terms used are unique to this method and are defined below. Asbestos: A term for naturally occurring fibrous minerals. Asbestos includes chrysotile, crocidolite, amosite (cummingtonite-grunerite asbestos), tremolite asbestos, actinolite asbestos, anthophyllite asbestos, and any of these minerals that have been chemically treated and/or altered. The precise chemical formulation of each species will vary with the location from which it was mined. Nominal compositions are listed: Mg3Si2O5(OH)4 Chrysotile $Na_{2}Fe_{3}^{2}+Fe_{2}^{3}+Si_{8}O_{22}(OH)_{2}$ Crocidolite (Mg,Fe)7Si8O22(OH)2 Amosite Ca2(Mg,Fe),Si8O22(OH)2 Tremolite-actinolite. (Mg,Fe)7Si8O22(OH)2 Anthophyllite . Asbestos Fiber: A fiber of asbestos which meets the criteria specified below for a fiber Aspect Ratio: The ratio of the length of a fiber to it's diameter (e.g. 3:1, 5:1 aspect ratios. Cleavage Fragments: Mineral particles formed by comminution of minerals. especially those characterized by parallel sides and a moderate aspect ratio (usually less than 20:1). Detection Limit: The number of fibers necessary to be 95% certain that the result is greater than zero. Differential Counting: The term applied to the practice of excluding certain kinds of fibers from the fiber count because they do not appear to be asbestos. Fiber: A particle that is 5 µm or longer. with a length-to-width ratio of 3 to 1 or longer. Field: The area within the graticule circle that is superimposed on the microscope image. Set: The samples which are taken, submitted to the laboratory, analyzed, and for which, interim or final result reports are generated. Tremolite, Anthophyllite, and Actinolite: The non-asbestos form of these minerals which meet the definition of a fiber. It includes any of these minerals that have been chemically treated and/or altered. Walton-Beckett Graticule: An eyepiece graticule specifically designed for asbestos fiber counting. It consists of a circle with a projected diameter of 100±2 µm (area of about 0.00785 mm²) with a crosshair having tic-marks at 3-µm intervals in one direction and 5-µm in the orthogonal direction. There are marks around the periphery of the circle to demonstrate the proper sizes and shapes of fibers. This design is reproduced in Figure 2. The disk is placed in one of the microscope eyepieces so that the design is superimposed on the field of view. #### 1.1. History Early surveys to determine asbestos exposures were conducted using impinger counts of total dust with the counts expressed as million particles per cubic foot. The British Asbestos Research Council recommended filter membrane counting in 1969. In July 1969, the Bureau of Occupational Safety and Health published a filter membrane method for counting asbestos fibers in the United States. This method was refined by NIOSH and published as P & CAM 239. On May 29, 1971, OSHA specified filter membrane sampling with phase contrast counting for evaluation of asbestos exposures at work sites in the United States. The use of this technique was again required by OSHA in 1986. Phase contrast microscopy has continued to be the method of choice for the measurement of occupational exposure to asbestos. #### 1.2. Principle Air is drawn through a MCE filter to capture airborne asbestos fibers. A wedge shaped portion of the filter is removed, placed on a glass microscope slide and made transparent. A measured area (field) is viewed by PCM. All the fibers meeting a defined criteria for asbestos are counted and considered a measure of the airborne asbestos concentration. #### 1.3. Advantages and Disadvantages There are four main advantages of PCM over other methods: - (1) The technique is specific for fibers. Phase contrast is a fiber counting technique which excludes non-fibrous particles from the analysis. - (2) The technique is inexpensive and does. not require specialized knowledge to carry out the analysis for total fiber counts. - (3) The analysis is quick and can be performed on-site for rapid determination of air concentrations of asbestos fibers. - (4) The technique has continuity with historical epidemiological studies so that estimates of expected disease can be inferred from long-term determinations of asbestos exposures. The main disadvantage of PCM is that it does not positively identify asbestos fibers. Other fibers which are not asbestos may be included in the count unless differential counting is performed. This requires a great deal of experience to adequately differentiate asbestos from non-asbestos fibers. Positive identification of asbestos must be performed by polarized light or electron microscopy techniques. A further disadvantage of PCM is that the smallest visible fibers are about 0.2 µm in diameter while the finest asbestos fibers may be as small as 0.02 µm in diameter. For some exposures, substantially more fibers may be present than are actually counted. # 1.4. Workplace Exposure Asbestos is used by the construction industry in such products as shingles, floor tiles, asbestos cement, roofing felts, insulation and acoustical products. Nonconstruction uses include brakes, clutch facings, paper, paints, plastics, and fabrics. One of the most significant exposures in the workplace is the removal and encapsulation of asbestos in schools, public buildings, and homes. Many workers have the potential to be exposed to asbestos during these operations. About 95% of the asbestos in commercial use in the United States is chrysotile. Crocidolite and amosite make up most of the remainder. Anthophyllite and tremolite or actinolite are likely to be encountered as contaminants in various industrial products. #### 1.5. Physical Properties Asbestos fiber possesses a high tensile strength along its axis, is chemically inert, non-combustible, and heat resistant. It has a high electrical resistance and good sound absorbing properties. It can be weaved into cables, fabrics or other textiles, and also matted into asbestos papers, felts, or mats. #### 2. Range and Detection Limit - 2.1. The ideal counting range on the filter is 100 to 1,300 fibers/mm². With a Walton-Beckett graticule this range is equivalent to 0.8 to 10 fibers/field. Using NIOSH counting statistics, a count of 0.8 fibers/field would give an approximate coefficient of variation (CV) of 0.13. - 2.2. The detection limit for this method is 4.0 fibers per 100 fields or 5.5 fibers/mm². This was determined using an equation to estimate the maximum CV possible at a specific concentration (95% confidence) and a Lower Control Limit of zero. The CV value was then used to determine a corresponding concentration from historical CV vs fiber relationships. As an example: Lower Control Limit (95% Confidence) = AC—1.645(CV)(AC) Where: AC=Estimate of the airborne fiber concentration (fibers/cc) Setting the Lower Control Limit=0 and solving for CV: #### 0=AC--1.645(CV)(AC) CV=0.61 This value was compared with CV vs.
count curves. The count at which CV = 0.61 for Leidel-Busch counting statistics or for an OSHA Salt Lake Technical Center (OSHA-SLTC) CV curve (see Appendix A for further information) was 4.4 fibers or 3.9 fibers per 100 fields, respectively. Although a lower detection limit of 4 fibers per 100 fields is supported by the OSHA-SLTC data, both data sets support the 4.5 fibers per 100 fields value. # 3. Method Performance—Precision and Accuracy Precision is dependent upon the total number of fibers counted and the uniformity of the fiber distribution on the filter. A general rule is to count at least 20 and not more than 100 fields. The count is discontinued when 100 fibers are counted, provided that 20 fields have already been counted. Counting more than 100 fibers results in only a small gain in precision. As the total count drops below 10 fibers, an accelerated loss of precision is noted. At this time, there is no known method to determine the absolute accuracy of the asbestos analysis. Results of samples prepared through the Proficiency Analytical Testing (PAT) Program and analyzed by the OSHA-SLTC showed no significant bias when compared to PAT reference values. The PAT samples were analyzed from 1987 to 1989 (N=36) and the concentration range was from 120 to 1,300 fibers/mm². 120 to 1,500 nocis # 4. Interferences Fibrous substances, if present, may interfere with asbestos analysis. Some common fibers are: The use of electron microscopy or optical tests such as polarized light, and dispersion staining may be used to differentiate these materials from asbestos when necessary. #### 5. Sampling #### 5.1. Equipment 5.1.1. Sample assembly (The assembly is shown in Figure 3). Conductive filter holder consisting of a 25-mm diameter, 3-piece cassette having a 50-mm long electrically conductive extension cowl. Backup pad, 25-mm, cellulose. Membrane filter, mixed-cellulose ester (MCE), 25-mm, plain, white, 0.8- to 1.2-µm pore size. #### Notes: - (a) DO NOT RE-USE CASSETTES. - (b) Fully conductive cassettes are required to reduce fiber loss to the sides of the cassette due to electrostatic attraction. - (c) Purchase filters which have been selected by the manufacturer for asbestos counting or analyze representative filters for fiber background before use. Discard the filter lot if more than 4 fibers/100 fields are found. - (d) To decrease the possibility of contamination, the sampling system (filter-backup pad-cassette) for asbestos is usually preassembled by the manufacturer. 5.1.2. Gel bands for sealing cassettes. 5.1.3. Sampling pump. Each pump must be a battery operated, self-contained unit small enough to be placed on the monitored employee and not interfere with the work being performed. The pump must be capable of sampling at 2.5 liters per minute (L/min) for the required sampling time 5.1.4. Flexible tubing, 6-mm bore. 5.1.5. Pump calibration. Stopwatch and bubble tube/burette or electronic meter. 5.2. Sampling Procedure 5.2.1. Seal the point where the base and cowl of each cassette meet (see Figure 3) with a gel band or tape. 5.2.2. Charge the pumps completely before beginning. 5.2.3. Connect each pump to a calibration cassette with an appropriate length of 6-mm bore plastic tubing. Do not use luer connectors—the type of cassette specified above has built-in adapters. 5.2.4. Select an appropriate flow rate for the situation being monitored. The sampling flow rate must be between 0.5 and 5.0 L/min for personal sampling and is commonly set between 1 and 2 L/min. Always choose a flow rate that will not produce overloaded filters 5.2.5. Calibrate each sampling pump before and after sampling with a calibration cassette in-line (Note: This calibration cassette should be from the same lot of cassettes used for sampling). Use a primary standard (e.g. bubble burette) to calibrate each pump. If possible, calibrate at the sampling site. Note: If sampling site calibration is not possible, environmental influences may affect the flow rate. The extent is dependent on the type of pump used. Consult with the pump manufacturer to determine dependence on environmental influences. If the pump is affected by temperature and pressure changes, use the formula in Appendix B to calculate the actual flow rate. 5.2.6. Connect each pump to the base of each sampling cassette with flexible tubing. Remove the end cap of each cassette and take each air sample open face. Assure that each sample cassette is held open side down in the employee's breathing zone during sampling. The distance from the nose/mouth of the employee to the cassette should be about 10 cm. Secure the cassette on the collar or lapel of the employee using spring clips or other similar devices. 5.2.7. A suggested minimum air volume when sampling to determine TWA compliance is 25 L. For Excursion Limit (30 min sampling time) evaluations, a minimum air volume of 48 L is recommended. 5.2.8. The most significant problem when sampling for asbestos is overloading the filter with non-asbestos dust. Suggested maximum air sample volumes for specific environments are: | Environment | Air Vol. (L) | |---|---------------| | Asbestos removal operations (visible dust). | 100. | | Asbestos removal operations (little dust). | 240. | | Office environments | 400 to 2,400. | CAUTION: Do not overload the filter with dust. High levels of non-fibrous dust particles may obscure fibers on the filter and lower the count or make counting impossible. If more than about 25 to 30% of the field area is obscured with dust, the result may be biased low. Smaller air volumes may be necessary when there is excessive non-asbestos dust in the air. While sampling, observe the filter with a small flashlight. If there is a visible layer of dust on the filter, stop sampling, remove and seal the cassette, and replace with a new sampling assembly. The total dust loading should not exceed 1 mg. 5.2.9. Blank samples are used to determine if any contamination has occurred ouring sample handling. Prepare two manks for the first 1 to 20 samples. For sets containing greater than 20 samples, prepare blanks as 10% of the samples. Handle blank samples in the same manner as air samples with one exception: Do not draw any air through the blank samples. Open the blank cassette in the place where the sample cassettes are mounted on the employee. Hold it open for about 30 seconds. Close and seal the cassette appropriately. Store blanks for shipment with the sample cassettes. 5.2.10. Immediately after sampling, close and seal each cassette with the base and plastic plugs. Do not touch or puncture the filter membrane as this will invalidate the analysis. 5.2.11. Attach a seal (OSHA-21 or: equivalent) around each cassette in such a way as to secure the end cap plug and base plug. Tape the ends of the seal together since the seal is not long enough to be wrapped end-to-end. Also wrap tape around the cassette at each joint to keep the seal secure. #### 5.3. Sample Shipment 5.3.1. Send the samples to the laboratory with paperwork requesting asbestos analysis. List any known fibrous interferences present during sampling on the paperwork. Also, note the workplace operation(s) sampled. 5.3.2. Secure and handle the samples in such that they will not rattle during shipment nor be exposed to static electricity. Do not ship samples in expanded polystyrene peanuts, vermiculite, paper shreds, or excelsior. Tape sample cassettes to sheet bubbles and place in a container that will cushion the samples without rattling. 5.3.3. To avoid the possibility of sample contamination, always ship bulk samples in separate mailing containers. ### 6. Analysis #### 6.1. Safety Precautions 6.1.1. Acetone is extremely flammable and precautions must be taken not to ignite it. Avoid using large containers or quantities of acetone. Transfer the solvent in a ventilated laboratory hood. Do not use acetone near any open flame. For generation of acetone vapor, use a spark free heat source. 6.1.2. Any asbestos spills should be cleaned up immediately to prevent dispersal of fibers. Prudence should be exercised to avoid contamination of laboratory facilities. or exposure of personnel to asbestos. Asbestos spills should be cleaned up with wet methods and/or a High Efficiency Particulate-Air (HEPA) filtered vacuum. CAUTION: Do not use a vacuum without a HEPA filter-It will disperse fine asbestos fibers in the air. # 6.2. Equipment 6.2.1. Phase contrast microscope with binocular or trinocular head. 6.2.2. Widefield or Huygenian 10X eyepieces (NOTE: The eyepiece containing the graticule must be a focusing eyepiece. Use a 40X phase objective with a numerical aperture of 0.65 to 0.75). 6.2.3. Kohler illumination (if possible) with green or blue filter. 6.2.4. Walton-Beckett Graticule, type G-22 with 100 ±2 µm projected diameter. 6.2.5. Mechanical stage. A rotating mechanical stage is convenient for use with polarized light. 6,2.6. Phase telescope. 6.2.7. Stage micrometer with 0.01-mm subdivisions. 6.2.8. Phase-shift test slide, mark II (Available from PTR optics Ltd., and also 6.2.9. Precleaned glass slides, 25 mm X 75 mm. One end can be frosted for convenience in writing sample numbers, etc., or paste-on labels can be used. 6.2.10. Cover glass #1½. 6.2.11. Scalpel (#10, curved blade). 6.2.12. Fine tipped forceps. 6.2.13. Aluminum block for clearing filter (see Appendix D and Figure 4). 6.2.14. Automatic adjustable pipette, 100to 500-µL. 6.2.15. Micropipette, 5 µL. #### 6.3. Reagents 6.3.1. Acetone (HPLC grade). 6.3.2. Triacetin (glycerol triacetate). 6.3.3. Lacquer or nail polish. #### 6.4. Standard Preparation A way to prepare standard asbestos samples of known concentration has not been developed. It is possible to prepare replicate samples of nearly equal concentration. This has been performed through the PAT program. These asbestos samples are distributed by the AIHA to participating laboratories. Since only about one-fourth of a
25-mm sample membrane is required for an asbestos count, any PAT sample can serve as a "standard" for replicate counting. 6.5. Sample Mounting Note: See Safety Precautions in Section 6.1. before proceeding. The objective is to produce samples with a smooth (non-grainy) background in a medium with a refractive index of approximately 1.46. The technique below collapses the filter for easier focusing and produces permanent mounts which are useful for quality control and interlaboratory comparison. An aluminum block or similar device is required for sample preparation. 6.5.1. Heat the aluminum block to about 70°C. The hot block should not be used on any surface that can be damaged by either the heat or from exposure to acetone. 6.5.2. Ensure that the glass slides and cover glasses are free of dust and fibers. 6.5.3. Remove the top plug to prevent a vacuum when the cassette is opened. Clean the outside of the cassette if necessary. Cut the seal and/or tape on the cassette with a razor blade. Very carefully separate the base from the extension cowl, leaving the filter and backup pad in the base. 6.5.4. With a rocking motion cut a triangular wedge from the filter using the scalpel. This wedge should be one-sixth to one-fourth of the filter. Grasp the filter wedge with the forceps on the perimeter of the filter which was clamped between the cassette pieces. DO NOT TOUCH the filter with your finger. Place the filter on the glass slide sample side up. Static electricity will usually keep the filter on the slide until it is cleared. 6.5.5. Place the tip of the micropipette containing about 200 µL acetone into the aluminum block. Insert the glass slide into the receiving slot in the aluminum block. Inject the acetone into the block with slow steady pressure on the plunger while holding the pipette firmly in place. Wait 3 to 5 seconds for the filter to clear, then remove the pipette and slide from the aluminum block. 6.5.6. Immediately (less than 30 seconds) place 2.5 to 3.5 µL of triacetin on the filter (NOTE: Waiting longer than 30 seconds will result in increased index of refraction and decreased contrast between the fibers and the preparation. This may also lead to separation of the cover slip from the slide). 6.5.7. Lower a cover slip gently onto the filter at a slight angle to reduce the possibility of forming air bubbles. If more than 30 seconds have elapsed between acetone exposure and triacetin application, glue the edges of the cover slip to the slide with lacquer or nail polish. 6.5.8. If clearing is slow, warm the slide for 15 min on a hot plate having a surface temperature of about 50°C to hasten clearing. The top of the hot block can be used if the slide is not heated too long. 6.5.9. Counting may proceed immediately after clearing and mounting are completed. #### 6.6. Sample Analysis Completely align the microscope according to the manufacturer's instructions. Then, align the microscope using the following general alignment routine at the beginning of every counting session and more often if necessary. #### 6.6.1. Alignment (1) Clean all optical surfaces. Even a small amount of dirt can significantly degrade the (2) Rough focus the objective on a sample. (3) Close down the field iris so that it is visible in the field of view. Focus the image of the iris with the condenser focus. Center the image of the iris in the field of view. (4) Install the phase telescope and focus on the phase rings. Critically center the rings. Misalignment of the rings results in astigmatism which will degrade the image. (5) Place the phase-shift test slide on the microscope stage and focus on the lines. The analyst must see line set 3 and should see at least parts of 4 and 5 but, not see line set 6. or 6. A microscope/microscopist combination which does not pass this test may not be used. # 6.6.2. Counting Fibers : (1) Place the prepared sample slide on the mechanical stage of the microscope. Position the center of the wedge under the objective lens and focus upon the sample. (2) Start counting from one end of the wedge and progress along a radial line to the other end (count in either direction from perimeter to wedge tip). Select fields randomly, without looking into the eyepieces, by slightly advancing the slide in one direction with the mechanical stage (3) Continually scan over a range of focal planes (generally the upper 10 to 15 µm of the filter surface) with the fine focus control during each field count. Spend at least 5 to 15 seconds per field. (4) Most samples will contain asbestos fibers with fiber diameters less than 1 μm . Look carefully for faint fiber images. The small diameter fibers will be very hard to see. However, they are an important contribution to the total count. (5) Count only fibers equal to or longer than 5 µm. Measure the length of curved fibers along the curve. (6) Count fibers which have a length to width ratio of 3:1 or greater. (7) Count all the fibers in at least 20 fields. Continue counting until either 100 fibers are counted or 100 fields have been viewed; whichever occurs first. Count all the fibers in the final field. (8) Fibers lying entirely within the boundary of the Walton-Beckett graticule field shall receive a count of 1. Fibers crossing the boundary once, having one end within the circle shall receive a count of ½. Do not count any fiber that crosses the graticule boundary more than once. Reject and do not count any other fibers even though they may be visible outside the graticule area. If a fiber touches the circle, it is considered to cross the line. (9) Count bundles of fibers as one fiber unless individual fibers can be clearly identified and each individual fiber is clearly not connected to another counted fiber. See Figure 2 for counting conventions. (10) Record the number of fibers in each field in a consistent way such that filter non-uniformity can be assessed. (11) Regularly check phase ring alignment. (12) When an agglomerate (mass of material) covers more than 25% of the field of view, reject the field and select another. Do not include it in the number of fields counted. (13) Perform a "blind recount" of 1 in every 10 filter wedges (slides). Re-label the slides using a person other than the original counter. #### 6.7. Fiber Identification As previously mentioned in Section 1.3., PCM does not provide positive confirmation of asbestos fibers. Alternate differential counting techniques should be used if discrimination is desirable. Differential counting may include primary discrimination based on morphology, polarized light analysis of fibers, or modification of PCM data by Scanning Electron or Transmission Electron Microscopy. A great deal of experience is required to routinely and correctly perform differential counting. It is discouraged unless it is legally necessary. Then, only if a fiber is obviously not asbestos should it be excluded from the count. Further discussion of this technique can be found in reference 8.10. If there is a question whether a fiber is asbestos or not, follow the rule: "WHEN IN DOUBT, COUNT." 6.8. Analytical Recommendations—Quality Control System 6.8.1. All individuals performing asbestos analysis must have taken the NIOSH course for sampling and evaluating airborne asbestos or an equivalent course. 6.8.2. Each laboratory engaged in asbestos counting shall set up a slide trading arrangement with at least two other laboratories in order to compare performance and eliminate inbreeding of error. The slide exchange occurs at least semiannually. The round robin results shall be posted where all analysts can view individual analyst's results. 6.8.3. Each laboratory engaged in asbestos counting shall participate in the Proficiency Analytical Testing Program, the Asbestos Analyst Registry or equivalent. 6.8.4. Each analyst shall select and count prepared slides from a "slide bank". These are quality assurance counts. The slide bank shall be prepared using uniformly distributed samples taken from the workload. Fiber densities should cover the entire range routinely analyzed by the laboratory. These slides are counted blind by all counters to establish an original standard deviation. This historical distribution is compared with the quality assurance counts. A counter must have 95% of all quality control samples counted within three standard deviations of the historical mean. This count is then integrated into a new historical mean and standard deviation for the slide. The analyses done by the counters to establish the slide bank may be used for an interim quality control program if the data are treated in a proper statistical fashion. #### 7. Calculations 7.1. Calculate the estimated airborne asbestos fiber concentration on the filter sample using the following formula: $$AC = \frac{\left[\left(\frac{FB}{FL}\right) - \left(\frac{BFB}{BFL}\right)\right] \times ECA}{1000 \times FR \times T \times MFA}$$ where: AC=Airborne fiber concentration FB=Total number of fibers greater than 5 μm counted FL=Total number of fields counted on the filter BFB=Total number of fibers greater than 5 µm counted in the blank BFL=Total number of fields counted on the blank ECA=Effective collecting area of filter (385 mm² nominal for a 25-mm filter.) FR=Pump flow rate (L/min) MFA=Microscope count field area (mm²). This is 0.00785 mm² for a WaltonBeckett Graticule. T=Sample collection time (min) 1,000=Conversion of L to cc Note: The collection area of a filter is seldom equal to 385 mm². It is appropriate for laboratories to routinely monitor the exact diameter using an inside micrometer. The collection area is calculated according to the formula: Area= $\pi(d/2)^2$ #### 7.2. Short-Cut Calculation Since a given analyst always has the same interpupillary distance, the number of fields per filter for a particular analyst will remain constant for a given size filter. The field size for that analyst is constant (i.e. the analyst is using an assigned microscope and is not
changing the reticle). For example, if the exposed area of the filter is always 385 mm² and the size of the field is always 0.00785 mm² the number of fields per filter will always be 49,000. In addition it is necessary to convert liters of air to cc. These three constants can then be combined such that ECA/(1,000×MFA)=49. The previous equation simplifies to: $$AC = \frac{\left(\frac{FB}{FL}\right) - \left(\frac{BFB}{BFL}\right) \times 49}{FR \times T}$$ #### 7.3. Recount Calculations As mentioned in step 13 of Section 6.6.2., a "blind recount" of 10% of the slides is performed. In all cases, differences will be observed between the first and second counts of the same filter wedge. Most of these differences will be due to chance alone, that is, due to the random variability (precision) of the count method. Statistical recount criteria enables one to decide whether observed differences can be explained due to chance alone or are probably due to systematic differences between analysts, microscopes, or other biasing factors. The following recount criterion is for a pair of counts that estimate AC in fibers/cc. The criterion is given at the type-I error level. That is, there is 5% maximum risk that we will reject a pair of counts for the reason that one might be biased, when the large observed difference is really due to chance. Reject a pair of counts if: $$\left| \sqrt{AC_2 - \sqrt{AC_1}} \right| > 2.78 \times \left(\sqrt{AC_{avg}} \right) \times CV_{FB}$$ Where: AC₁=lower estimated airborne fiber concentration AC₂=higher estimated airborne fiber concentration AC_{avg}=average of the two concentration estimates CV_{FB}=CV for the average of the two concentration estimates If a pair of counts are rejected by this criterion then, recount the rest of the filters in the submitted set. Apply the test and reject any other pairs failing the test. Rejection shall include a memo to the industrial hygienist stating that the sample failed a statistical test for homogeneity and the true air concentration may be significantly different than the reported value. #### 7.4. Reporting Results Report results to the industrial hygienist as fibers/cc. Use two significant figures. If multiple analyses are performed on a sample, an average of the results is to be reported unless any of the results can be rejected for cause. ### 8. References 8.1. Dreesen, W.C., et al., U.S. Public Health Service: A Study of Asbestosis in the Asbestos Textile Industry (Public Health Bulletin No. 241), U.S. Treasury Dept., Washington, DC, 1938. - 8.2. Asbestos Research Council: The Measurement of Airborne Asbestos Dust by the Membrane Filter Method (Technical Note), Asbestos Research Council, Rockdale, Lancashire, Great Britain, 1969. - 8.3. Bayer, S.G., Zumwalde, R.D., Brown, T.A., Equipment and Procedure for Mounting Millipore Filters and Counting Asbestos Fibers by Phase Contrast Microscopy, Bureau of Occupational Health, U.S. Dept. of Health, Education and Welfare, Cincinnati, OH, 1969. - 8.4. NIOSH Manual of Analytical Methods, 2nd ed., Vol. 1 (DHEW/NIOSH Pub. No. 77–157–A). National Institute for Occupational Safety and Health, Cincinnati, OH, 1977. pp. 239–1—239–21. - 8.5. Asbestos, Code of Federal Regulations 29 CFR 1910.1001. 1971. - 8.6. Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite. Final Rule, Federal Register 51:119 (20 June 1986). pp. 22612–22790. - 8.7. Asbestos, Tremolite, Anthophyllite, and Actinolite, Code of Federal Regulations 1910.1001. 1988. pp. 711–752. - 8.8. Criteria for a Recommended Standard—Occupational Exposure to Asbestos (DHEW/NIOSH Pub. No. HSM 72-10267), National Institute for Occupational Safety and Health, NIOSH, Cincinnatí, OH, 1972. pp. III-1—III-24. - 8.9. Leidel, N.A., Bayer, S.G., Zumwalde, R.D., Busch, K.A., USPHS/NIOSH Membrane Filter Method for Evaluating Airborne 'Asbestos Fibers (DHEW/NIOSH Pub. No. 79–127). National Institute for Occupational Safety and Health, Cincinnati, OH, 1979. - 8.10. Dixon, W.C., Applications of Optical Microscopy in Analysis of Asbestos and Quartz, Analytical Techniques in Occupational Health Chemistry, edited by D.D. Dollberg and A.W. Verstuyft. Wash. D.C.: American Chemical Society, (ACS Symposium Series 120) 1980. pp. 13–41. # **Quality Control** The OSHA asbestos regulations require each laboratory to establish a quality control program. The following is presented as an example of how the OSHA-SLTC constructed its internal CV curve as part of meeting this requirement. Data for the CV curve shown below is from 395 samples collected during OSHA compliance inspections and analyzed from October 1980 through April 1986. Each sample was counted by 2 to 5 different counters independently of one another. The standard deviation and the CV statistic was calculated for each sample. This data was then plotted on a graph of CV vs. fibers/mm². A least squares regression was performed using the following equation: CV=antilog₁₀[A(log₁₀(x))²+B(log₁₀(x))+C] where: x=the number of fibers/mm2 Application of least squares gave: A=0.182205 B=0.973343 C=0.327499 Using these values, the equation becomes: $CV=antilog_{10}[0.182205(log_{10}(x))^2 -0.973343(log_{10}(x))+0.327499]$ Sampling Pump Flow Rate Corrections This correction is used if a difference greater than 5% in ambient temperature and/or pressure is noted between calibration and sampling sites and the pump does not compensate for the differences. $$Q_{act} = Q_{cal} \times \sqrt{\frac{P_{cal}}{P_{act}}} \times \left(\frac{T_{act}}{T_{cal}}\right)$$ Where: $Q_{\rm act}$ =actual flow rate $Q_{\rm cal}$ =calibrated flow rate (if a rotameter was used, the rotameter value) $\begin{array}{l} P_{cal}\text{=}uncorrected air pressure at calibration} \\ P_{act}\text{=}uncorrected air pressure at sampling site} \\ T_{act}\text{=}temperature at sampling site (K)} \\ T_{cal}\text{=}temperature at calibration (K)} \end{array}$ # Walton-Beckett Graticule When ordering the Graticule for asbestos counting, specify the exact disc diameter needed to fit the ocular of the microscope and the diameter (mm) of the circular counting area. Instructions for measuring the dimensions necessary are listed: (1) Insert any available graticule into the focusing eyepiece and focus so that the graticule lines are sharp and clear. (2) Align the microscope. (3) Place a stage micrometer on the microscope object stage and focus the microscope on the graduated lines. (4) Measure the magnified grid length, PL (μm), using the stage micrometer. (5) Remove the graticule from the microscope and measure its actual grid length, AL (mm). This can be accomplished by using a mechanical stage fitted with verniers, or a jeweler's loupe with a direct reading scale. (6) Let D=100 μ m. Calculate the circle diameter, d_c (mm), for the Walton-Beckett graticule and specify the diameter when making a purchase: $$d_c = \frac{AL \times D}{PL}$$ Example: If PL=108 μ m, AL=2.93 mm and D=100 μ m, then, $$d_c = \frac{2.93 \times 100}{108} = 2.71 \text{mm}$$ (7) Each eyepiece-objective-reticle combination on the microscope must be calibrated. Should any of the three be changed (by zoom adjustment, disassembly, replacement, etc.), the combination must be recalibrated. Calibration may change if interpupillary distance is changed. Measure the field diameter, \vec{D} (acceptable range: 100±2 μ m) with a stage micrometer upon receipt of the graticule from the manufacturer. Determine the field area (mm²). Field Area= π (D/2) ² If D=100 μ m=0.1 mm, then Field Area= π (0.1 mm/2) ²=0.00785 mm ² The Graticule is available from: Graticules Ltd., Morley Road, Tonbridge TN9 IRN, Kent, England (Telephone 011–44–732–359061). Also available from PTR Optics Ltd., 145 Newton Street, Waltham, MA 02154 [telephone (617) 891–6000] or McCrone Accessories and Components, 2506 S. Michigan Ave., Chicago, IL 60616 [phone (312)-842–7100]. The graticule is custom made for each microscope. BILLING CODE 4510-26-P Figure 1: Walton-Beckett Graticule with some explanatory fibers. #### BILLING CODE 4510-26-C # Counts for the Fibers in the Figure | Structure
No. | Count | Explanation | |------------------|-------|--| | 1 to 6 | 1 | Single fibers all con-
tained within the Cir-
cle. | | 7 | 1/2 | Fiber crosses circle once. | | 8 8 | 0 | Fiber too short. | | 9 | 2 | Two crossing fibers. | | 10 | 0 | Fiber outside graticule. | | 11 | 0 | Fiber crosses graticule twice. | | 12 | 1/2 | Although split, fiber only crosses once. | # Appendix D to § 1926.1101 [Amended] 9. Appendix D to § 1926.1101 is revised to read as follows: This mandatory appendix contains the medical questionnaires that must be administered to all employees who are exposed to asbestos above the permissible exposure limit, and who will therefore be included in their employer's medical surveillance program.* * * 10. Appendix F to § 1926.1101 is revised to read as follows: # Appendix F to § 1926.1101. Work Practices and Engineering Controls for Class I Asbestos Operations.—Nonmandatory This is a non-mandatory appendix to the asbestos standards for construction and for shipyards. It describes criteria and procedures for erecting and using negative pressure enclosures for Class I Asbestos Work, when NPEs are used as an allowable control method to comply with paragraph (g)(5)(i) of this section. Many small and variable details are involved in the erection of a negative pressure enclosure. OSHA and most participants in the rulemaking agreed that only the major, more performance oriented criteria should be made mandatory. These criteria are set out in paragraph (g) of this section. In addition, this appendix includes these mandatory specifications and procedures in its guidelines in order to make this appendix coherent and helpful. The mandatory nature of the criteria which appear in the regulatory text is not changed because they are included in this
"nonmandatory" appendix. Similarly, the additional criteria and procedures included as guidelines in the appendix, do not become mandatory because mandatory criteria are also included in these comprehensive guidelines. In addition, none of the criteria, both mendatory and recommended, are meant to specify or imply the need for use of patented or licensed methods or equipment. Recommended specifications included in this attachment should not discourage the use of creative afternatives which can be shown to reliably achieve the objectives of negative-pressure enclosures. Requirements included in this appendix, cover general provisions to be followed in all asbestos jobs, provisions which must be followed for all Class I asbestos jobs, and provisions governing the construction and testing of negative pressure enclosures. The first category includes the requirement for use of wet methods, HEPA vacuums, and immediate bagging of waste; Class I work must conform to the following provisions: - oversight by competent person - use of critical barriers over all openings to work area - isolation of HVAC systems - use of impermeable dropcloths and coverage of all objects within regulated areas In addition, more specific requirements for NPEs include: - maintenance of −0.02 inches water gauge within enclosure - manometric measurements - air movement away from employees performing removal work - smoke testing or equivalent for detection of leaks and air direction deactivation of electrical circuits, if not provided with ground-fault circuit interrupters. #### Planning the Project The standard requires that an exposure assessment be conducted before the asbestos job is begun [§ 1926.1101 (f)(1)]. Information needed for that assessment, includes data relating to prior similar jobs, as applied to the specific variables of the current job. The information needed to conduct the assessment will be useful in planning the project, and in complying with any reporting requirements under this standard, when significant changes are being made to a control system listed in the standard, [see also those of USEPA (40 CFR 61, subpart M). Thus, although the standard does not explicitly require the preparation of a written asbestos removal plan, the usual constituents of such a plan, i.e., a description of the enclosure, the equipment, and the procedures to be used throughout the project, must be determined before the enclosure can be erected. The following information should be included in the planning of the system: A physical description of the work area; A description of the approximate amount of material to be removed; A schedule for turning off and sealing existing ventilation systems; Personnel hygiene procedures; A description of personal protective equipment and clothing to be worn by employees; A description of the local exhaust ventilation systems to be used and how they are to be tested; A description of work practices to be observed by employees; An air monitoring plan; A description of the method to be used to transport waste material; and The location of the dump site. Materials and Equipment Necessary for Asbestos Removal Although individual asbestos removal projects vary in terms of the equipment required to accomplish the removal of the materials, some equipment and materials are common to most asbestos removal operations. Plastic sheeting used to protect horizontal surfaces, seal HVAC openings or to seal vertical openings and ceilings should have a minimum thickness of 6 mils. Tape or other adhesive used to attach plastic sheeting should be of sufficient adhesive strength to support the weight of the material plus all stresses encountered during the entire duration of the project without becoming detached from the surface. Other equipment and materials which should be available at the beginning of each project are: - —HEPA Filtered Vacuum is essential for cleaning the work area after the asbestos has been removed. It should have a long hose capable of reaching out-of-the-way places, such as areas above ceiling tiles, behind pipes, etc. - —Portable air ventilation systems installed to provide the negative air pressure and air removal from the enclosure must be equipped with a HEPA filter. The number and capacity of units required to ventilate an enclosure depend on the size of the area to be ventilated. The filters for these systems should be designed in such a manner that they can be replaced when the air flow volume is reduced by the build-up of dust in the filtration material. Pressure monitoring devices with alarms and strip chart recorders attached to each system to indicate the pressure differential and the loss due to dust buildup on the filter are recommended. —Water sprayers should be used to keep the asbestos material as saturated as possible during removal; the sprayers will provide a fine mist that minimizes the impact of the spray on the material. -Water used to saturate the asbestos containing material can be amended by adding at least 15 milliliters (1/4 ounce) of wetting agent in 1 liter (1 pint) of water. An example of a wetting agent is a 50/50 mixture of polyoxyethylene ether and polyoxyethylene polyglycol ester. Backup power supplies are recommended, especially for ventilation systems. - —Shower and bath water should be with mixed hot and cold water faucets. Water that has been used to clean personnel or equipment should either be filtered or be collected and discarded as asbestos waste. Soap and shampoo should be provided to aid in removing dust from the workers' skin and hair. - —See paragraphs (h) and (i) of this section for appropriate respiratory protection and protective clothing. - —See paragraph (k) of this section for required signs and labels. #### Preparing the Work Area Disabling HVAC Systems: The power to the heating, ventilation, and air conditioning systems that service the restricted area must be deactivated and locked off. All ducts, grills, access ports, windows and vents must be sealed off with two layers of plastic to prevent entrainment of contaminated air. Operating HVAC Systems in the Restricted Area: If components of a HVAC system located in the restricted area are connected to a system that will service another zone during the project, the portion of the duct in the restricted area must be sealed and pressurized. Necessary precautions include caulking the duct joints, covering all cracks and openings with two layers of sheeting, and pressurizing the duct throughout the duration of the project by restricting the return air flow. The power to the fan supplying the positive pressure should be locked "on" to prevent pressure loss. Sealing Elevators: If an elevator shaft is located in the restricted area, it should be either shut down or isolated by sealing with two layers of plastic sheeting. The sheeting should provide enough slack to accommodate the pressure changes in the shaft without breaking the air-tight seal. Removing Mobile Objects: All movable objects should be cleaned and removed from the work area before an enclosure is constructed unless moving the objects creates a hazard. Mobile objects will be assumed to be contaminated and should be either cleaned with amended water and a HEPA vacuum and then removed from the area or wrapped and then disposed of as hazardous waste. Cleaning and Sealing Surfaces: After cleaning with water and a HEPA vacuum, surfaces of stationary objects should be covered with two layers of plastic sheeting. The sheeting should be secured with duct tape or an equivalent method to provide a tight seal around the object. Bagging Waste: In addition to the requirement for immediate bagging of waste for disposal, it is further recommended that the waste material be double-bagged and sealed in plastic bags designed for asbestos disposal. The bags should be stored in a waste storage area that can be controlled by the workers conducting the removal. Filters removed from air handling units and rubbish removed from the area are to be bagged and handled as hazardous waste. #### Constructing the Enclosure The enclosure should be constructed to provide an air-tight seal around ducts and openings into existing ventilation systems and around penetrations for electrical conduits, telephone wires, water lines, drain pipes, etc. Enclosures should be both airtight and watertight except for those openings designed to provide entry and/or air flow control. Size: An enclosure should be the minimum volume to encompass all of the working surfaces yet allow unencumbered movement by the worker(s), provide unrestricted air flow past the worker(s), and ensure walking surfaces can be kept free of tripping hazards. Shape: The enclosure may be any shape that optimizes the flow of ventilation air past the worker(s). Structural Integrity: The walls, ceilings and floors must be supported in such a manner that portions of the enclosure will not fall down during normal use. Openings: It is not necessary that the structure be airtight; openings may be designed to direct air flow. Such openings should be located at a distance from active removal operations. They should be designed to draw air into the enclosure under all anticipated circumstances. In the event that negative pressure is lost, they should be fitted with either HEPA filters to trap dust or automatic trap doors that prevent dust from escaping the enclosure. Openings for exits should be controlled by an airlock or a vestibule. Barrier Supports: Frames should be constructed to support all unsupported spans of sheeting. Sheeting: Walls, barriers, ceilings, and floors should be lined with two layers of plastic sheeting having a thickness of at least 6 mil. Seams: Seams in the sheeting material should be minimized to reduce the possibilities of accidental rips and tears in the adhesive or connections. All seams in the sheeting should overlap, be staggered and not be located at corners or wall-to-floor joints. Areas Within an
Enclosure: Each enclosure consists of a work area, a decontamination area, and waste storage area. The work area where the asbestos removal operations occur should be separated from both the waste storage area and the contamination control area by physical curtains, doors, and/or airflow patterns that force any airborne contamination back into the work area. See paragraph (j) of this section for requirements for hygiene facilities. During egress from the work area, each worker should step into the equipment room, clean tools and equipment, and remove gross contamination from clothing by wet cleaning and HEPA vacuuming. Before entering the shower area, foot coverings, head coverings, hand coverings, and coveralls are removed and placed in impervious bags for disposal or cleaning. Airline connections from airline respirators with HEPA disconnects and power cables from powered air-purifying respirators (PAPRs) will be disconnected just prior to entering the shower room. Establishing Negative Pressure Within the Enclosure Negative Pressure: Air is to be drawn into the enclosure under all anticipated conditions and exhausted through a HEPA filter for 24 hours a day during the entire duration of the project. Air Flow Tests: Air flow patterns will be checked before removal operations begin, at least once per operating shift and any time there is a question regarding the integrity of the enclosure. The primary test for air flow is to trace air currents with smoke tubes or other visual methods. Flow checks are made at each opening and at each doorway to demonstrate that air is being drawn into the enclosure and at each worker's position to show that air is being drawn away from the breathing zone. Monitoring Pressure Within the Enclosure: After the initial air flow patterns have been checked, the static pressure must be monitored within the enclosure. Monitoring may be made using manometers, pressure gauges, or combinations of these devices. It is recommended that they be attached to alarms and strip chart recorders at points identified by the design engineer. Corrective Actions: If the manometers or pressure gauges demonstrate a reduction in pressure differential below the required level, work should cease and the reason for the change investigated and appropriate changes made. The air flow patterns should be retested before work begins again. Pressure Differential: The design parameters for static pressure differentials between the inside and outside of enclosures typically range from 0.02 to 0.10 inches of water gauge, depending on conditions. All zones inside the enclosure must have less pressure than the ambient pressure outside of the enclosure (-0.02 inches water gauge differential). Design specifications for the differential vary according to the size, configuration, and shape of the enclosure as well as ambient and mechanical air pressure conditions around the enclosure. Air Flow Patterns: The flow of air past each worker shall be enhanced by positioning the intakes and exhaust ports to remove contaminated air from the worker's breathing zone, by positioning HEPA vacuum cleaners to draw air from the worker's breathing zone, by forcing relatively uncontaminated air past the worker toward an exhaust port, or by using a combination of methods to reduce the worker's exposure. Air Handling Unit Exhaust: The exhaust plume from air handling units should be located away from adjacent personnel and intakes for HVAC systems. Air Flow Volume: The air flow volume (cubic meters per minute) exhausted (removed) from the workplace must exceed the amount of makeup air supplied to the enclosure. The rate of air exhausted from the enclosure should be designed to maintain a negative pressure in the enclosure and air movement past each worker. The volume of air flow removed from the enclosure should replace the volume of the container at every 5 to 15 minutes. Air flow volume will need to be relatively high for large enclosures, enclosures with awkward shapes, enclosures with multiple openings, and operations employing several workers in the enclosure. Air Flow Velocity: At each opening, the air flow velocity must visibly "drag" air into the enclosure. The velocity of air flow within the enclosure must be adequate to remove airborne contamination from each worker's breathing zone without disturbing the asbestos-containing material on surfaces. Airlocks: Airlocks are mechanisms on doors and curtains that control the air flow patterns in the doorways. If air flow occurs, the patterns through doorways must be such that the air flows toward the inside of the enclosure. Sometimes vestibules, double doors, or double curtains are used to prevent air movement through the doorways. To use a vestibule, a worker enters a chamber by opening the door or curtain and then closing the entry before opening the exit door or curtain. Airlocks should be located between the equipment room and shower room, between the shower room and the clean room, and between the waste storage area and the outside of the enclosure. The air flow between adjacent rooms must be checked using smoke tubes or other visual tests to ensure the flow patterns draw air toward the work area without producing eddies. # Monitoring for Airborne Concentrations In addition to the breathing zone samples taken as outlined in paragraph (f) of this section, samples of air should be taken to demonstrate the integrity of the enclosure, the cleanliness of the clean room and shower area, and the effectiveness of the HEPA filter. If the clean room is shown to be contaminated, the room must be relocated to an uncontaminated area. Samples taken near the exhaust of portable ventilation systems must be done with care. #### General Work Practices Preventing dust dispersion is the primary means of controlling the spread of asbestos within the enclosure. Whenever practical, the point of removal should be isolated, enclosed, covered, or shielded from the workers in the area. Waste asbestos containing materials must be bagged during or immediately after removal; the material must remain saturated until the waste container is sealed. Waste material with sharp points or corners must be placed in hard air-tight containers rather than bags. Whenever possible, large components should be sealed in plastic sheeting and removed intact. Bags or containers of waste will be moved to the waste holding area, washed, and wrapped in a bag with the appropriate labels. #### Cleaning the Work Area Surfaces within the work area should be kept free of visible dust and debris to the extent feasible. Whenever visible dust appears on surfaces, the surfaces within the enclosure must be cleaned by wiping with a wet sponge, brush, or cloth and then vacuumed with a HEPA vacuum. All surfaces within the enclosure should be cleaned before the exhaust ventilation system is deactivated and the enclosure is disassembled. An approved encapsulate may be sprayed onto areas after the visible dust has been removed. - 11. Appendix G to § 1926.1101 is removed and reserved. - 12. Appendix H of § 1926.1101 is revised to read as follows: # Appendix H to § 1915.1001—Substance Technical Information for Asbestos. Non-Mandatory #### I. Substance Identification A. Substance: "Asbestos" is the name of a class of magnesium-silicate minerals that occur in fibrous form. Minerals that are included in this group are chrysotile, crocidolite, amosite, anthophyllite asbestos, tremolite asbestos, and actinolite asbestos. B. Asbestos is and was used in the manufacture of heat-resistant clothing, automotive brake and clutch linings, and a variety of building materials including floor tiles, roofing felts, ceiling tiles, asbestoscement pipe and sheet, and fire-resistant drywall. Asbestos is also present in pipe and boiler insulation materials and in sprayed-on materials located on beams, in crawlspaces, and between walls. C. The potential for an asbestos-containing product to release breathable fibers depends largely on its degree of friability. Friable means that the material can be crumbled with hand pressure and is therefore likely to emit fibers. The fibrous fluffy sprayed-on materials used for fireproofing, insulation, or sound proofing are considered to be friable, and they readily release airborne fibers if disturbed. Materials such as vinyl-asbestos floor tile or roofing felt are considered nonfriable if intact and generally do not emit airborne fibers unless subjected to sanding, sawing and other aggressive operations. Asbestos-cement pipe or sheet can emit airborne fibers if the materials are cut or sawed, or if they are broken. D. Permissible exposure: Exposure to airborne asbestos fibers may not exceed 0.1 fibers per cubic centimeter of air (0.1 f/cc) averaged over the 8-hour workday, and 1 fiber per cubic centimeter of air (1.0 f/cc) averaged over a 30 minute work period. #### II. Health Hazard Data A. Asbestos can cause disabling respiratory disease and various types of cancers if the fibers are inhaled. Inhaling or ingesting fibers from contaminated clothing or skin can also result in these diseases. The symptoms of these diseases generally do not appear for 20 or more years after initial exposure. B. Exposure to asbestos has been shown to cause lung cancer, mesothelioma, and cancer of the stomach and colon. Mesothelioma is a rare cancer of the thin membrane lining of the chest and abdomen. Symptoms of mesothelioma include shortness of breath, pain in the walls of the chest, and/or abdominal pain. # III. Respirators and Protective Clothing A. Respirators: You are required to wear a respirator when performing tasks that result in asbestos exposure that exceeds the permissible exposure limit (PEL) of 0.1 f/cc and when performing certain designated operations. Air-purifying respirators equipped with a high-efficiency particulate air (HEPA) filter can be used where airborne asbestos fiber concentrations do not exceed 1.0 f/cc; otherwise, more
protective respirators such as air-supplied, positivepressure, full facepiece respirators must be used. Disposable respirators or dust masks are not permitted to be used for asbestos work. For effective protection, respirators must fit your face and head snugly. Your employer is required to conduct fit test when you are first assigned a respirator and every 6 months thereafter. Respirators should not be loosened or removed in work situations where their use is required. B. Protective Clothing: You are required to wear protective clothing in work areas where asbestos fiber concentrations exceed the permissible exposure limit (PEL) of 0.1 f/cc. ## IV. Disposal Procedures and Clean-up - A. Wastes that are generated by processes where asbestos is present include: - 1. Empty asbestos shipping containers. - 2. Process wastes such as cuttings, trimmings, or reject materials. - 3. Housekeeping waste from wet-sweeping or HEPA-vacuuming. - 4. Asbestos fireproofing or insulating material that is removed from buildings. - 5. Asbestos-containing building products removed during building renovation or demolition. - 6. Contaminated disposable protective clothing. - B. Empty shipping bags can be flattened under exhaust hoods and packed into airtight containers for disposal. Empty shipping drums are difficult to clean and should be - C. Vacuum bags or disposable paper filters should not be cleaned, but should be sprayed with a fine water mist and placed into a labeled waste container: - D. Process waste and housekeeping waste should be wetted with water or a mixture of water and surfactant prior to packaging in disposable containers. - E. Asbestos-containing material that if removed from buildings must be disposed of in leak-tight 6-mil plastic bags, plastic-lined cardboard containers, or plastic-lined metal containers. These wastes which are removed while wet, should be sealed in containers before they dry out to minimize the release of asbestos fibers during handling. #### V. Access to Information A. Each year, your employer is required to inform you of the information contained in this standard and appendices for asbestos. In addition, your employer must instruct you in the proper work practices for handling asbestos-containing materials, and the correct use of protective equipment. B. Your employer is required to determine whether you are being exposed to asbestos. Your employer must treat exposure to thermal system insulation and sprayed-on and trowled-on surfacing material as asbestos exposure, unless results of laboratory analysis show that the material does not contain asbestos. You or your representative has the right to observe employee measurements and to record the results obtained. Your employer is required to inform you of your exposure, and, if you are exposed above the permissible exposure limit, he or she is required to inform you of the actions that are being taken to reduce your exposure to within the permissible limit. C. Your employer is required to keep records of your exposures and medical examinations. These exposure records must be kept for at least thirty (30) years. Medical records must be kept for the period of your employment plus thirty (30) years. D. Your employer is required to release your exposure and medical records to your physician or designated representative upon your written request. # Appendix I of 1926.1101 [Amended] 13. Appendix I of § 1926.1101 is amended by revising the first sentence of the second paragraph of section IV. entitled Surveillance and Preventive Consideration to read as follows: The employer is required to institute a medical surveillance program for all employees who are or will be exposed to asbestos at or above the permissible exposure limit (0.1 fiber per cubic centimeter of air). 14. Appendix K to § 1926.1101 is added to read as follows: # Appendix K to § 1926.1101-Polarized **Light Microscopy of Asbestos (Non-**Mandatory) Method number: ID-191 Matrix: Bulk Collection Procedure: Collect approximately 1 to 2 grams of each type of material and place into separate 20 mL scintillation vials. Analytical Procedure: A portion of each separate phase is analyzed by gross examination, phasepolar examination, and central stop dispersion microscopy. Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources may be substituted. #### 1. Introduction This method describes the collection and analysis of asbestos bulk materials by light microscopy techniques including phasepolar illumination and central-stop dispersion microscopy. Some terms unique to asbestos analysis are defined below: Amphibole: A family of minerals whose crystals are formed by long, thin units which have two thin ribbons of double chain silicate with a brucite ribbon in between. The shape of each unit is similar to an "I beam" Minerals important in asbestos analysis include cummingtonite-grunerite, crocidolite, tremolite-actinolite and anthophyllite. Asbestos: A term for naturally occurring fibrous minerals. Asbestos includes chrysotile, cummingtonite-grunerite asbestos (amosite), anthophyllite asbestos, tremolite asbestos, crocidolite, actinolite asbestos and any of these minerals which have been chemically treated or altered. The precise chemical formulation of each species varies with the location from which it was mined. Nominal compositions are listed: ChrysotileMg₃Si₂O₅(OH)₄ Crocidolite (Riebeckite asbestos)..... Na₂Fe₃²+Fe₂³+Si₈O₂₂(OH)₂ Cummingtonite-Grunerite asbestos (Amosite)..... (Mg,Fe)7Si8O22(OH)2 Tremolite-Actinolite asbestos Ca2(Mg,Fe), Si8O22(OH)2 Anthophyllite asbestos... (Mg,Fe)7Si8O22(OH)2 Asbestos Fiber: A fiber of asbestos meeting the criteria for a fiber. (See section 3.5, of this Appendix) Aspect Ratio: The ratio of the length of a fiber to its diameter usually defined as "length : width", e.g. 3:1. Brucite: A sheet mineral with the composition Mg(OH)2. Central Stop Dispersion Staining (microscope): This is a dark field microscope technique that images particles using only light refracted by the particle, excluding light that travels through the particle unrefracted. This is usually accomplished with a McCrone objective or other arrangement which places a circular stop with apparent aperture equal to the objective aperture in the back focal plane of the microscope. Cleavage Fragments: Mineral particles formed by the comminution of minerals, especially those characterized by relatively parallel sides and moderate aspect ratio. Differential Counting: The term applied to the practice of excluding certain kinds of fibers from a phase contrast asbestos count because they are not asbestos. Fiber: A particle longer than or equal to 5 μm with a length to width ratio greater than or equal to 3:1. This may include cleavage fragments. (see section 3.5 of this appendix). Phase Contrast: Contrast obtained in the microscope by causing light scattered by small particles to destructively interfere with unscattered light, thereby enhancing the visibility of very small particles and particles with very low intrinsic contrast. Phase Contrast Microscope: A microscope configured with a phase mask pair to create phase contrast. The technique which uses this is called Phase Contrast Microscopy Phase-Polar Analysis: This is the use of polarized light in a phase contrast microscope. It is used to see the same size fibers that are visible in air filter analysis. Although fibers finer than 1 µm are visible, analysis of these is inferred from analysis of larger bundles that are usually present. Phase-Polar Microscope: The phase-polar microscope is a phase contrast microscope which has an analyzer, a polarizer, a first order red plate and a rotating phase condenser all in place so that the polarized light image is enhanced by phase contrast. Sealing Encapsulant: This is a product which can be applied, preferably by spraying, onto an asbestos surface which will seal the surface so that fibers cannot be released. Serpentine: A mineral family consisting of minerals with the general composition Mg3(Si2O4(OH)4 having the magnesium in brucite layer over a silicate layer. Minerals important in asbestos analysis included in this family are chrysotile, lizardite, antigorite. # 1.1. History Light microscopy has been used for well over 100 years for the determination of mineral species. This analysis is carried out using specialized polarizing microscopes as well as bright field microscopes. The identification of minerals is an on-going process with many new minerals described each year. The first recorded use of asbestos was in Finland about 2500 B.C. where the material was used in the mud wattle for the wooden huts the people lived in as well as strengthening for pottery. Adverse health aspects of the mineral were noted nearly 2000 years ago when Pliny the Younger wrote about the poor health of slaves in the asbestos mines. Although known to be injurious for centuries, the first modern references to its toxicity were by the British Labor Inspectorate when it banned asbestos dust from the workplace in 1898. Asbestosis cases were described in the literature after the turn of the century. Cancer was first suspected in the mid 1930's and a causal link to mesothelioma was made in 1965. Because of the public concern for worker and public safety with the use of this material, several different types of analysis were applied to the determination of asbestos content. Light microscopy requires a great deal of experience and craft. Attempts were made to apply less subjective methods to the analysis. X-ray diffraction was partially successful in determining the mineral types but was unable to separate out the fibrous portions from the non-fibrous portions. Also, the minimum detection limit for asbestos analysis by X-ray diffraction (XRD) is about 1%. Differential Thermal Analysis (DTA) was no more
successful. These provide useful corroborating information when the presence of asbestos has been shown by microscopy; however, neither can determine the difference between fibrous and non-fibrous minerals when both habits are present. The same is true of Infrared Absorption (IR). When electron microscopy was applied to asbestos analysis, hundreds of fibers were discovered present too small to be visible in any light microscope. There are two different types of electron microscope used for asbestos analysis: Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). Scanning Electron Microscopy is useful in identifying minerals. The SEM can provide two of the three pieces of information required to identify fibers by electron microscopy: morphology and chemistry. The third is structure as determined by Selected Area Electron Diffraction—SAED which is performed in the TEM. Although the resolution of the SEM is sufficient for very fine fibers to be seen, accuracy of chemical analysis that can be performed on the fibers varies with fiber diameter in fibers of less than 0.2 µm diameter. The TEM is a powerful tool to identify fibers too small to be resolved by light microscopy and should be used in conjunction with this method when necessary. The TEM can provide all three pieces of information required for fiber identification. Most fibers thicker than 1 µm can adequately be defined in the light microscope. The light microscope remains as the best instrument for the determination of mineral type. This is because the minerals under investigation were first described analytically with the light microscope. It is inexpensive and gives positive identification for most samples analyzed. Further, when optical techniques are inadequate, there is ample indication that alternative techniques should be used for complete identification of the sample. #### 1.2. Principle Minerals consist of atoms that may be arranged in random order or in a regular arrangement. Amorphous materials have atoms in random order while crystalline materials have long range order. Many materials are transparent to light, at least for small particles or for thin sections. The properties of these materials can be investigated by the effect that the material has on light passing through it. The six asbestos minerals are all crystalline with particular properties that have been identified and cataloged. These six minerals are anisotropic. They have a regular array of atoms, but the arrangement is not the same in all directions. Each major direction of the crystal presents a different regularity. Light photons travelling in each of these main directions will encounter different electrical neighborhoods, affecting the path and time of travel. The techniques outlined in this method use the fact that light traveling through fibers or crystals in different directions will behave differently, but predictably. The behavior of the light as it travels through a crystal can be measured and compared with known or determined values to identify the mineral species. Usually, Polarized Light Microscopy (PLM) is performed with strain-free objectives on a bright-field microscope platform. This would limit the resolution of the microscope to about 0.4 µm. Because OSHA requires the counting and identification of fibers visible in phase contrast, the phase contrast platform is used to visualize the fibers with the polarizing elements added into the light path. Polarized light methods cannot identify fibers finer than about 1 µm in diameter even though they are visible. The finest fibers are usually identified by inference from the presence of larger, identifiable fiber bundles. When fibers are present, but not identifiable by light microscopy, use either SEM or TEM to determine the fiber identity. #### 1.3. Advantages and Disadvantages The advantages of light microcopy are: (a) Basic identification of the materials was first performed by light microscopy and gross analysis. This provides a large base of published information against which to check analysis and analytical technique. (b) The analysis is specific to fibers. The minerals present can exist in asbestiform, fibrous, prismatic, or massive varieties all at the same time. Therefore, bulk methods of analysis such as X-ray diffraction, IR analysis, DTA, etc. are inappropriate where the material is not known to be fibrous. (c) The analysis is quick, requires little preparation time, and can be performed onsite if a suitably equipped microscope is available. The disadvantages are: (a) Even using phase-polar illumination, not all the fibers present may be seen. This is a problem for very low asbestos concentrations where agglomerations or large bundles of fibers may not be present to allow identification by inference. (b) The method requires a great degree of sophistication on the part of the microscopist. An analyst is only as useful as his mental catalog of images. Therefore, a microscopist's accuracy is enhanced by experience. The mineralogical training of the analyst is very important. It is the basis on which subjective decisions are made. (c) The method uses only a tiny amount of material for analysis. This may lead to sampling bias and false results (high or low). This is especially true if the sample is severely inhomogeneous. (d) Fibers may be bound in a matrix and not distinguishable as fibers so identification cannot be made. #### 1.4. Method Performance 1.4.1. This method can be used for determination of asbestos content from 0 to 100% asbestos. The detection limit has not been adequately determined, although for selected samples, the limit is very low, depending on the number of particles examined. For mostly homogeneous, finely divided samples, with no difficult fibrous interferences, the detection limit is below 1%. For inhomogeneous samples (most samples), the detection limit remains undefined. NIST has conducted proficiency testing of laboratories on a national scale. Although each round is reported statistically with an average, control limits, etc., the results indicate a difficulty in establishing precision especially in the low concentration range. It is suspected that there is significant bias in the low range especially near 1%. EPA tried to remedy this by requiring a mandatory point counting scheme for samples less than 10%. The point counting procedure is tedious, and may introduce significant biases of its own. It has not been incorporated into this method. 1.4.2. The precision and accuracy of the quantitation tests performed in this method are unknown. Concentrations are easier to determine in commercial products where asbestos was deliberately added because the amount is usually more than a few percent. An analyst's results can be "calibrated" against the known amounts added by the manufacturer. For geological samples, the degree of homogeneity affects the precision. 1.4.3. The performance of the method is analyst dependent. The analyst must choose carefully and not necessarily randomly the portions for analysis to assure that detection of asbestos occurs when it is present. For this reason, the analyst must have adequate training in sample preparation, and experience in the location and identification of asbestos in samples. This is usually accomplished through substantial on-the-job training as well as formal education in mineralogy and microscopy. #### 1.5. Interferences Any material which is long, thin, and small enough to be viewed under the microscope can be considered an interference for asbestos. There are literally hundreds of interferences in workplaces. The techniques described in this method are normally sufficient to eliminate the interferences. An analyst's success in eliminating the interferences depends on proper training. Asbestos minerals belong to two mineral families: the serpentines and the amphiboles. In the serpentine family, the only common fibrous mineral is chrysotile. Occasionally, the mineral antigorite occurs in a fibril habit with morphology similar to the amphiboles. The amphibole minerals consist of a score of different minerals of which only five are regulated by federal standard: amosite, crocidolite, anthophyllite asbestos, tremolite asbestos and actinolite asbestos. These are the only amphibole minerals that have been commercially exploited for their fibrous properties; however: the rest can and do occur occasionally in asbestiform habit: In addition to the related mineral interferences, other minerals common in building material may present a problem for some microscopists: gypsum, anhydrite, brucite, quartz fibers, talc fibers or ribbons, wollastonite, perlite, attapulgite, etc. Other fibrous materials commonly present in workplaces are: fiberglass, mineral wool, ceramic wool, refractory ceramic fibers, kevlar, nomex, synthetic fibers, graphite or carbon fibers, cellulose (paper or wood) fibers, metal fibers, etc. Matrix embedding material can sometimes be a negative interference. The analyst may not be able to easily extract the fibers from the matrix in order to use the method. Where possible, remove the matrix before the analysis, taking careful note of the loss of weight. Some common matrix materials are; vinyl, rubber, tar, paint, plant fiber, cement, and epoxy. A further negative interference is that the asbestos fibers themselves may be either too small to be seen in Phase contrast Microscopy (PCM) or of a very low fibrous quality, having the appearance of plant fibers. The analyst's ability to deal with these materials increases with experience. 1.6. Uses and Occupational Exposure Asbestos is ubiquitous in the environment, More than 40% of the land area of the United States is composed of minerals which may contain asbestos. Fortunately, the actual formation of great amounts of asbestos is relatively rare. Nonetheless, there are locations in which environmental exposure can be severe such as in the Serpentine Hills of
California. There are thousands of uses for asbestos in industry and the home. Asbestos abatement workers are the most current segment of the population to have occupational exposure to great amounts of asbestos. If the material is undisturbed, there is no exposure. Exposure occurs when the asbestos-containing material is abraded or otherwise disturbed during maintenance operations or some other activity. Approximately 95% of the asbestos in place in the United States is chrysotile. Amosite and crocidolite make up nearly all the difference. Tremolite and anthophyllite make up a very small percentage. Tremolite is found in extremely small amounts in certain chrysotile deposits. Actinolite exposure is probably greatest from environmental sources, but has been identified in vermiculite containing, sprayed-on insulating materials which may have been certified as asbestos-free. #### 1.7. Physical and Chemical Properties The nominal chemical compositions for the asbestos minerals were given in Section 1. Compared to cleavage fragments of the same minerals, asbestiform fibers possess a high tensile strength along the fiber axis. They are chemically inert, non-combustible, and heat resistant. Except for chrysotile, they are insoluble in Hydrochloric acid (HCl). Chrysotile is slightly soluble in HCl. Asbestos has high electrical resistance and good sound absorbing characteristics. It can be woven into cables, fabrics or other textiles, or matted into papers, felts, and mats. 1.8. Toxicology (This Section is for Information Only and Should Not Be Taken as OSHA Policy) Possible physiologic results of respiratory exposure to asbestos are mesothelioma of the pleura or peritoneum, interstitial fibrosis, asbestosis, pneumoconiosis, or respiratory cancer. The possible consequences of asbestos exposure are detailed in the NIOSH Criteria Document or in the OSHA Asbestos Standards 29 CFR 1910.1001 and 29 CFR 1926.1101. #### 2. Sampling Procedure ### 2.1. Equipment for sampling - (a) Tube or cork borer sampling device - (b) Knife - (c) 20 mL scintillation vial or similar vial - (d) Sealing encapsulant # 2.2. Safety Precautions Asbestos is a known carcinogen. Take care when sampling. While in an asbestos-containing atmosphere, a properly selected and fit-tested respirator should be worn. Take samples in a manner to cause the least amount of dust. Follow these general guidelines: - (a) Do not make unnecessary dust. - (b) Take only a small amount (1 to 2 g). - (c). Tightly close the sample container. (d) Use encapsulant to seal the snot where - (d) Use encapsulant to seal the spot where the sample was taken, if necessary. # 2.3. Sampling Procedure Samples of any suspect material should be taken from an inconspicuous place. Where the material is to remain, seal the sampling wound with an encapsulant to eliminate the potential for exposure from the sample site. Microscopy requires only a few milligrams of material. The amount that will fill a 20 mL scintillation vial is more than adequate. Be sure to collect samples from all layers and phases of material. If possible, make separate samples of each different phase of the material. This will aid in determining the actual hazard. DO NOT USE ENVELOPES. PLASTIC OR PAPER BAGS OF ANY KIND TO COLLECT SAMPLES. The use of plastic bags presents a contamination hazard to laboratory personnel and to other samples. When these containers are opened, a bellows effect blows fibers out of the container onto everything, including the person opening the container. If a cork-borer type sampler is available, push the tube through the material all the way, so that all layers of material are sampled. Some samplers are intended to be disposable. These should be capped and sent to the laboratory. If a non-disposable cork borer is used, empty the contents into a scintillation vial and send to the laboratory. Vigorously and completely clean the cork borer between samples. #### 2.4 Shipment Samples packed in glass vials must not touch or they might break in shipment. (a) Seal the samples with a sample seal (such as the OSHA 21) over the end to guard against tampering and to identify the sample. (b) Package the bulk samples in separate packages from the air samples. They may cross-contaminate each other and will invalidate the results of the air samples. (c) Include identifying paperwork with the samples, but not in contact with the suspected asbestos. (d) To maintain sample accountability, ship the samples by certified mail, overnight express, or hand carry them to the laboratory ### 3. Analysis The analysis of asbestos samples can be divided into two major parts: sample preparation and microscopy. Because of the different asbestos uses that may be encountered by the analyst, each sample may need different preparation steps. The choices are outlined below. There are several different tests that are performed to identify the asbestos species and determine the percentage. They will be explained below. #### 3.1. Safety (a) Do not create unnecessary dust. Handle the samples in HEPA-filter equipped hoods. If samples are received in bags, envelopes or other inappropriate container, open them only in a hood having a face velocity at or greater than 100 fpm. Transfer a small amount to a scintillation vial and only handle the smaller amount. (b) Open samples in a hood, never in the open lab area. (c) Index of refraction oils can be toxic. Take care not to get this material on the skin. Wash immediately with soap and water if this happens. (d) Samples that have been heated in the muffle furnace or the drying oven may be hot. Handle them with tongs until they are cool enough to handle. (e) Some of the solvents used, such as THF (tetrahydrofuran), are toxic and should only be handled in an appropriate fume hood and according to instructions given in the Material Safety Data Sheet (MSDS). #### 3.2. Equipment (a) Phase contrast microscope with 10x, 16x and 40x objectives, 10x wide-field eyepieces, G-22 Walton-Beckett graticule, Whipple disk, polarizer, analyzer and first order red or gypsum plate, 100 Watt illuminator, rotating position condenser with oversize phase rings, central stop dispersion objective, Kohler illumination and a rotating mechanical stage. (b) Stereo microscope with reflected light illumination, transmitted light illumination, polarizer, analyzer and first order red or gypsum plate, and rotating stage. (c) Negative pressure hood for the stereo microscope - (d) Muffle furnace capable of 600°C (e) Drying oven capable of 50—150°C - (f) Aluminum specimen pans - (g) Tongs for handling samples in the furnace (h) High dispersion index of refraction oils (Special for dispersion staining.) n=1.550 n=1.585 n=1.590 n=1.605 n=1.620 n=1.670 n=1.680 n=1.690 - (i) A set of index of refraction oils from about n=1.350 to n=2.000 in n=0.005 increments. (Standard for Becke line analysis.) - (j) Glass slides with painted or frosted ends 1x3 inches 1mm (thick, precleaned. - (k) Cover Slips 22x22 mm, #11/2 - (l) Paper clips or dissection needles (m) Hand grinder - (n) Scalpel with both #10 and #11 blades - (o) 0.1 molar HCl - (p) Decalcifying solution (Baxter Scientific Products) Ethylenediaminetetraacetic Acid, | i roducis, Emplenediammeteu | aacciic ricia, | |-----------------------------|----------------| | Tetrasodium | 0.7 g/l | | Sodium Potassium Tartrate | 8.0 mg/liter | | Hydrochloric Acid | 99.2 g/liter | | Sodium Tartrate | | - (q) Tetrahydrofuran (THF) - (r) Hotplate capable of 60°C (s) Balance - (t) Hacksaw blade - (u) Ruby mortar and pestle #### 3.3. Sample Pre-Preparation Sample preparation begins with prepreparation which may include chemical reduction of the matrix, heating the sample to dryness or heating in the muffle furnace. The end result is a sample which has been reduced to a powder that is sufficiently fine to fit under the cover slip. Analyze different phases of samples separately, e.g., tile and the tile mastic should be analyzed separately as the mastic may contain asbestos while the tile may not. (a) Wet Samples Samples with a high water content will not give the proper dispersion colors and must be dried prior to sample mounting. Remove the lid of the scintillation vial, place the bottle in the drying oven and heat at 100°C to dryness (usually about 2 h). Samples which are not submitted to the lab in glass must be removed and placed in glass vials or aluminum weighing pans before placing them in the drying oven. (b) Samples With Organic Interference— Muffle Furnace These may include samples with tar as a matrix, vinyl asbestos tile, or any other organic that can be reduced by heating. Remove the sample from the vial and weigh in a balance to determine the weight of the submitted portion. Place the sample in a muffle furnace at 500°C for 1 to 2 h or until all obvious organic material has been removed. Retrieve, cool and weigh again to determine the weight loss on ignition. This is necessary to determine the asbestos content of the submitted sample, because the analyst will be looking at a reduced sample. Note: Heating above 600°C will cause the sample to undergo a structural change which, given sufficient time, will convert the chrysotile to forsterite. Heating even at lower temperatures for 1 to 2 h may have a measurable effect on the optical properties of the minerals. If the analyst is unsure of what to expect, a sample of standard asbestos should be heated to the same temperature for the same length of time so that it can be examined for the proper interpretation. ## (c) Samples With Organic Interference—THF Vinyl asbestos tile is the most common material treated with this solvent, although, substances containing tar will sometimes yield to this treatment. Select a portion of the material and then grind it up if possible. Weigh the sample and place it in a test tube. Add sufficient THF to dissolve the organic matrix. This is usually about 4 to 5 mL. Remember, THF is highly flammable. Filter the
remaining material through a tared silver membrane, dry and weigh to determine how much is left after the solvent extraction. Further process the sample to remove carbonate or mount directly. ## (d) Samples With Carbonate Interference Carbonate material is often found on fibers and sometimes must be removed in order to perform dispersion microscopy. Weigh out a portion of the material and place it in a test tube. Add a sufficient amount of 0.1 M HCl or decalcifying solution in the tube to react all the carbonate as evidenced by gas formation; i.e., when the gas bubbles stop, add a little more solution. If no more gas forms, the reaction is complete. Filter the material out through a tared silver membrane, dry and weigh to determine the weight lost. #### 3.4. Sample Preparation Samples must be prepared so that accurate determination can be made of the asbestos type and amount present. The following steps are carried out in the low-flow hood (a low-flow hood has less than 50 fpm flow): (1) If the sample has large lumps, is hard, or cannot be made to lie under a cover slip. the grain size must be reduced. Place a small amount between two slides and grind the material between them or grind a small amount in a clean mortar end pestle. The choice of whether to use an alumina, ruby, or diamond mortar depends on the hardness of the material. Impact damage can alter the asbestos mineral if too much mechanical shock occurs. (Freezer mills can completely destroy the observable crystallinity of asbestos and should not be used). For some samples, a portion of material can be shaved off with a scalpel, ground off with a hand grinder or hack saw blade. The preparation tools should either be disposable or cleaned thoroughly. Use vigorous scrubbing to loosen the fibers during the washing. Rinse the implements with copious amounts of water and air-dry in a dust-free environment. (2) If the sample is powder or has been reduced as in (1) above, it is ready to mount. Place a glass slide on a piece of optical tissue end write the identification on the painted or frosted end. Place two drops of index of refraction medium n=1.550 on the slide. (The medium n=1.550 is chosen because it is the matching index for chrysotile. Dip the end of a clean paper-clip or dissecting needle into the droplet of refraction medium on the slide to moisten it. Then dip the probe into the powder sample. Transfer what sticks on the probe to the slide. The material on the end of the probe should have a diameter of about 3 mm for a good mount. If the material is very fine, less sample may be appropriate. For non-powder samples such as fiber mats, forceps should be used to transfer a small amount of material to the slide. Stir the material in the medium on the slide, spreading it out and making the preparation as uniform as possible. Place a cover-slip on the preparation by gently lowering onto the slide and allowing it to fall "trapdoor" fashion on the preparation to push out any bubbles. Press gently on the cover slip to even out the distribution of particulate on the slide. If there is insufficient mounting oil on the slide, one or two drops may be placed near the edge of the coverslip on the slide. Capillary action will draw the necessary amount of liquid into the preparation. Remove excess oil with the point of a laboratory wiper. Treat at least two different areas of each phase in this fashion. Choose representative areas of the sample. It may be useful to select particular areas or fibers for analysis. This is useful to identify asbestos in severely inhomogeneous samples. When it is determined that amphiboles may be present, repeat the above process using the appropriate high-dispersion oils until an identification is made or all six asbestos minerals have been ruled out. Note that percent determination must be done in the index medium 1.550 because amphiboles tend to disappear in their matching mediums. # 3.5. Analytical procedure Note: This method presumes some knowledge of mineralogy and optical petrography. The analysis consists of three parts: The determination of whether there is asbestos present, what type is present and the determination of how much is present. The general flow of the analysis is: (1) Gross examination. - (2) Examination under polarized light on the stereo microscope. - (3) Examination by phase-polar illumination on the compound phase microscope. - (4) Determination of species by dispersion stain. Examination by Becke line analysis may also be used; however, this is usually more cumbersome for asbestos determination. - (5) Difficult samples may need to be analyzed by SEM or TEM, or the results from those techniques combined with light microscopy for a definitive identification. Identification of a particle as asbestos requires that it be asbestiform. Description of particles should follow the suggestion of Campbell. (Figure 1) BILLING CODE 4510-26-P Figure 1. Particle definitions showing mineral growth habits. From the U.S. Bureau of Mines For the purpose of regulation, the mineral must be one of the six minerals covered and must be in the asbestos growth habit. Large specimen samples of asbestos generally have the gross appearance of wood. Fibers are easily parted from it. Asbestos fibers are very long compared with their widths. The fibers have a very high tensile strength as demonstrated by bending without breaking. Asbestos fibers exist in bundles that ere easily parted, show longitudinal fine structure and may be tufted at the ends showing "bundle of sticks" morphology. In the microscope some of these properties may not be observable. Amphiboles do not always show striations along their length even when they are asbestos. Neither will they always show tufting. They generally do not show a curved nature except for very long fibers. Asbestos and asbestiform minerals are usually characterized in groups by extremely high aspect ratios (greater than 100:1). While aspect ratio analysis is useful for characterizing populations of fibers, it cannot be used to identify individual fibers of intermediate to short aspect ratio. Observation of many fibers is often necessary to determine whether a sample consists of "cleavage fragments" or of asbestos fibers. Most cleavage fragments of the asbestos minerals are easily distinguishable from true asbestos fibers. This is because true cleavage fragments usually have larger diameters than 1 µm. Internal structure of particles larger than this usually shows them to have no internal fibrillar structure. In addition, cleavage fragments of the monoclinic amphiboles show inclined extinction under crossed polars with no compensator. Asbestos fibers usually show extinction at zero degrees or ambiguous extinction if any at all. Morphologically, the larger cleavage fragments are obvious by their blunt or stepped ends showing prismatic habit. Also, they tend to be acicular rather than filiform. Where the particles are less than 1 µm in diameter and have an aspect ratio greater than or equal to 3:1, it is recommended that the sample be analyzed by SEM or TEM if there is any question whether the fibers are cleavage fragments or asbestiform particles. Care must be taken when analyzing by electron microscopy because the interferences are different from those in light microscopy and may structurally be very similar to asbestos. The classic interference is between anthophyllite and biopyribole or intermediate fiber. Use the same morphological clues for electron microscopy as are used for light microscopy, e.g. fibril splitting, internal longitudinal striation, fraying, curvature, etc. (1) Gross examination: Examine the sample, preferably in the glass vial. Determine the presence of any obvious fibrous component. Estimate a percentage based on previous experience and current observation. Determine whether any prepreparation is necessary. Determine the number of phases present. This step may be carried out or augmented by observation at 6 to 40× under a stereo microscope. (2) After performing any necessary prepreparation, prepare slides of each phase as described above. Two preparations of the same phase in the same index medium can be made side-by-side on the same glass for convenience. Examine with the polarizing stereo microscope. Estimate the percentage of asbestos based on the amount of birefringent fiber present. (3) Examine the slides on the phase-polar microscopes at magnifications of 160 and 400x. Note the morphology of the fibers. Long, thin, very straight fibers with little curvature are indicative of fibers from the amphibole family. Curved, wavy fibers are usually indicative of chrysotile. Estimate the percentage of asbestos on the phase-polar microscope under conditions of crossed polars and a gypsum plate. Fibers smaller than 1.0 µm in thickness must be identified by inference to the presence of larger, identifiable fibers and morphology. If no larger fibers are visible, electron microscopy should be performed. At this point, only a tentative identification can be made. Full identification must be made with dispersion microscopy. Details of the tests are included in the appendices. (4) Once fibers have been determined to be present, they must be identified. Adjust the microscope for dispersion mode and observe the fibers. The microscope has a rotating stage, one polarizing element, and a system for generating dark-field dispersion microscopy (see Section 4.6. of this appendix). Align a fiber with its length parallel to the polarizer and note the color of the Becke lines. Rotate the stage to bring the fiber length perpendicular to the polarizer and note the color. Repeat this process for every fiber or fiber bundle examined. The colors must be consistent with the colors generated by standard asbestos reference materials for a positive identification. In n=1.550, amphiboles will generally show a yellow to straw-yellow color indicating that the fiber indices of refraction are higher than the
liquid. If long, thin fibers are noted and the colors are yellow, prepare further slides as above in the suggested matching liquids listed below: | Type of asbestos | Index of refraction | |------------------|---------------------| | Chrysotile | n=1.550. | | Amosite | n=1.670 r 1.680. | | Crocidolite | n=1.690. | | Anthophyllite | n=1.605 nd 1.620. | | Tremolite | n=1.605 and 1.620. | | Actinolite | n=1.620. | Where more than one liquid is suggested, the first is preferred; however, in some cases this liquid will not give good dispersion color. Take care to avoid interferences in the other liquid; e.g., wollastonite in n=1.620 will give the same colors as tremolite. In n=1.605 wollastonite will appear yellow in all directions. Wollastonite may be determined under crossed polars as it will change from blue to yellow as it is rotated along its fiber axis by tapping on the cover slip. Asbestos minerals will not change in this way. Determination of the angle of extinction may, when present, aid in the determination of anthophyllite from tremolite. True asbestos fibers usually have 0° extinction or ambiguous extinction, while cleavage fragments have more definite extinction. Continue analysis until both preparations have been examined and all present species of asbestos are identified. If there are no fibers present, or there is less than 0.1% present, end the analysis with the minimum number of slides (2). (5) Some fibers have a coating on them which makes dispersion microscopy very difficult or impossible. Becke line analysis or electron microscopy may be performed in those cases. Determine the percentage by light microscopy. TEM analysis tonds to overestimate the actual percentage present. (6) Percentage determination is an estimate of occluded area, tempered by gross observation. Gross observation information is used to make sure that the high magnification microscopy does not greatly over- or underestimate the amount of fiber present. This part of the analysis requires a great deal of experience. Satisfactory models for asbestos content analysis have not yet been developed, although some models based on metallurgical grain-size determination have found some utility. Estimation is more easily handled in situations where the grain sizes visible at about 160x are about the same and the sample is relatively homogeneous. View all of the area under the cover slip to make the percentage determination. View the fields while moving the stage, paying attention to the clumps of material. These are not usually the best areas to perform dispersion microscopy because of the interference from other materials. But, they are the areas most likely to represent the accurate percentage in the sample. Small amounts of asbestos require slower scanning and more frequent analysis of individual fields. Report the area occluded by asbestos as the concentration. This estimate does not generally take into consideration the difference in density of the different species present in the sample. For most samples this is adequate. Simulation studies with similar materials must be carried out to apply microvisual estimation for that purpose and is beyond the scope of this procedure. (7) Where successive concentrations have been made by chemical or physical means, the amount reported is the percentage of the material in the "as submitted" or original state. The percentage determined by microscopy is multiplied by the fractions remaining after pre-preparation steps to give the percentage in the original sample. For example: Step 1. 60% remains after heating at 550 °C for 1 h. Step 2. 30% of the residue of step 1 remains after dissolution of carbonate in 0.1 m HCl. Step 3. Microvisual estimation determines that 5% of the sample is chrysotile asbestos. The reported result is: R=(Microvisual result in percent) × (Fraction remaining after step 2) × (Fraction remaining of original sample after step 1) R=(5)×(.30)×(.60)=0.9% (8) Report the percent and type of asbestos present. For samples where asbestos was identified, but is less than 1.0%, report "Asbestos present, less than 1.0%." There must have been at least two observed fibers or fiber bundles in the two preparations to be reported as present. For samples where asbestos was not seen, report as "None Detected." #### Auxiliary Information Because of the subjective nature of asbestos analysis, certain concepts and procedures need to be discussed in more depth. This information will help the analyst understand why some of the procedures are carried out the way they are. #### 4.1. Light Light is electromagnetic energy. It travels from its source in packets called quanta. It is instructive to consider light as a plane wave. The light has a direction of travel. Perpendicular to this and mutually perpendicular to each other, are two vector components. One is the magnetic vector and the other is the electric vector. We shall only be concerned with the electric vector. In this description, the interaction of the vector and the mineral will describe all the observable phenomena. From a light source such a microscope illuminator, light travels in all different direction from the filament. In any given direction away from the filament, the electric vector is perpendicular to the direction of travel of a light ray. While perpendicular, its orientation is random about the travel axis. If the electric vectors from all the light rays were lined up by passing the light through a filter that would only let light rays with electric vectors oriented in one direction pass, the light would then be *POLARIZED*. Polarized light interacts with matter in the direction of the electric vector. This is the polarization direction. Using this property it is possible to use polarized light to probe different materials and identify them by how they interact with light. The speed of light in a vacuum is a constant at about 2.99×108 m/s. When light travels in different materials such as air, water, minerals or oil, it does not travel at this speed. It travels slower. This slowing is a function of both the material through which the light is traveling and the wavelength or frequency of the light. In general, the more dense the material, the slower the light travels. Also, generally, the higher the frequency, the slower the light will travel. The ratio of the speed of light in a vacuum to that in a material is called the index of refraction (n). It is usually measured at 589 nm (the sodium D line). If white light (light containing all the visible wavelengths) travels through a material, rays of longer wavelengths will travel faster than those of shorter wavelengths, this separation is called dispersion. Dispersion is used as an identifier of materials as described in Section 4.6. #### 4.2. Material Properties Materials are either amorphous or crystalline. The difference between these two descriptions depends on the positions of the atoms in them. The atoms in amorphous materials are randomly arranged with no long range order. An example of an amorphous material is glass. The atoms in crystalline materials, on the other hand, are in regular arrays and have long range order. Most of the atoms can be found in highly predictable locations. Examples of crystalline material are salt, gold, and the asbestos minerals. It is beyond the scope of this method to describe the different types of crystalline materials that can be found, or the full description of the classes into which they can fall. However, some general crystallography is provided below to give a foundation to the procedures described. With the exception of anthophyllite, all the asbestos minerals belong to the monoclinic crystal type. The unit cell is the basic repeating unit of the crystal and for monoclinic crystals can be described as having three unequal sides, two 90° angles and one angle not equal to 90°. The orthorhombic group, of which anthophyllite is a member has three unequal sides and three 90° angles. The unequal sides are a consequence of the complexity of fitting the different atoms into the unit cell. Although the atoms are in a regular array, that array is not symmetrical in all directions. There is long range order in the three major directions of the crystal. However, the order is different in each of the three directions. This has the effect that the index of refraction is different in each of the three directions. Using polarized light, we can investigate the index of refraction in each of the directions and identify the mineral or material under investigation. The indices α , β , and γ are used to identify the lowest, middle, and highest index of refraction respectively. The x direction, associated with α is called the fast axis. Conversely, the z direction is associated with yand is the slow direction. Crocidolite has α along the fiber length making it "length-fast". The remainder of the asbestos minerals have the yaxis along the fiber length. They are called "length-slow". This orientation to fiber length is used to aid in the identification of asbestos. # 4.3. Polarized Light Technique Polarized light microscopy as described in this section uses the phase-polar microscope described in Section 3.2. A phase contrast microscope is fitted with two polarizing elements, one below and one above the sample. The polarizers have their polarization directions at right angles to each other. Depending on the tests performed, there may be a compensator between these two polarizing elements. A compensator is a piece of mineral with known properties that 'compensates'' for some deficiency in the optical train. Light emerging from a polarizing element has its electric vector pointing in the polarization direction of the element. The light will not be subsequently transmitted through a second element set at a right angle to the first element. Unless the light is altered as it passes from one element to the other, there is no transmission of
light. #### 4.4. Angle of Extinction Crystals which have different crystal regularity in two or three main directions are said to be anisotropic. They have a different index of refraction in each of the main directions. When such a crystal is inserted between the crossed polars, the field of view is no longer dark but shows the crystal in color. The color depends on the properties of the crystal. The light acts as if it travels through the crystal along the optical axes. If a crystal optical axis were lined up along one of the polarizing directions (either the polarizer or the analyzer) the light would appear to travel only in that direction, and it would blink out or go dark. The difference in degrees between the fiber direction and the angle at which it blinks out is called the angle of extinction. When this angle can be measured, it is useful in identifying the mineral. The procedure for measuring the angle of extinction is to first identify the polarization direction in the microscope. A. commercial alignment slide can be used to establish the polarization directions or use anthophyllite or another suitable mineral. This mineral has a zero degree angle of extinction and will go dark to extinction as it aligns with the polarization directions. When a fiber of anthophyllite has gone to extinction, align the eyepiece reticle or graticule with the fiber so that there is a visual cue as to the direction of polarization in the field of view. Tape or otherwise secure the eyepiece in this position so it will not shift. After the polarization direction has been identified in the field of view, move the particle of interest to the center of the field of view and align it with the polarization direction. For fibers, align the fiber along this direction. Note the angular reading of the rotating stage. Looking at the particle, rotate the stage until the fiber goes dark or "blinks out". Again note the reading of the stage. The difference in the first reading and the second is an angle of extinction. The angle measured may vary as the orientation of the fiber changes about its long axis. Tables of mineralogical data usually report the maximum angle of extinction. Asbestos forming minerals, when they exhibit an angle of extinction, usually do show an angle of extinction close to the reported maximum, or as appropriate depending on the substitution chemistry. # 4.5. Crossed Polars with Compensator When the optical axes of a crystal are not lined up along one of the polarizing directions (either the polarizer or the analyzer) part of the light travels along one axis and part travels along the other visible axis. This is characteristic of birefringent materials. The color depends on the difference of the two visible indices of refraction and the thickness of the crystal. The maximum difference available is the difference between the α and the γ axes. This maximum difference is usually tabulated as the birefringence of the crystal. For this test, align the fiber at 45° to the polarization directions in order to maximize the contribution to each of the optical axes. The colors seen are called retardation colors. They arise from the recombination of light which has traveled through the two separate directions of the crystal. One of the rays is retarded behind the other since the light in that direction travels slower. On recombination, some of the colors which make up white light are enhanced by constructive interference and some are suppressed by destructive interference. The result is a color dependent on the difference between the indices and the thickness of the crystal. The proper colors, thicknesses, and retardations are shown on a Michel-Levy chart. The three items, retardation, thickness and birefringence are related by the following relationship: $R=t(n_{\gamma}-n_{\alpha})$ R=retardation, t=crystal thickness in µm, and $n_{\alpha \gamma}$ =indices of refraction. Examination of the equation for asbestos minerals reveals that the visible colors for almost all common asbestos minerals and fiber sizes are shades of gray and black. The eye is relatively poor at discriminating different shades of gray. It is very good at discriminating different colors. In order to compensate for the low retardation, a compensator is added to the light train hetween the polarization elements. The compensator used for this test is a gypsum plate of known thickness and birefringence. Such a compensator when oriented at 45° to the polarizer direction, provides a retardation of 530 nm of the 530 nm wavelength color. This enhances the red color and gives the background a characteristic red to redmagenta color. If this "full-wave' compensator is in place when the asbestos preparation is inserted into the light train, the colors seen on the fibers are quite different. Gypsum, like asbestos has a fast axis and a slow axis. When a fiber is aligned with its fast axis in the same direction as the fest axis of the gypsum plate, the ray vibrating in the slow direction is retarded by both the asbestos and the gypsum. This results in a higher retardation than would be present for either of the two minerals. The color seen is a second order blue. When the fiber is rotated 90° using the rotating stage, the slow direction of the fiber is now aligned with the fast direction of the gypsum and the fast direction of the fiber is aligned with the slow direction of the gypsum. Thus, one ray vibrates faster in the fast direction of the gypsum, and slower in the slow direction of the fiber; the other ray will vibrate slower in the slow direction of the gypsum and faster in the fast direction of the fiber. In this case, the effect is subtractive and the color seen is a first order yellow. As long as the fiber thickness does not add appreciably to the color, the same basic colors will be seen for all asbestos types except crocidolite. In crocidolite the colors will be weaker, may be in the opposite directions, and will be altered by the blue absorption color natural to crocidolite. Hundreds of other materials will give the same colors as asbestos, and therefore, this test is not definitive for asbestos. The test is useful in discriminating against fiberglass or other amorphous fibers such as some synthetic fibers. Certain synthetic fibers will show retardation colors different than asbestos; however, there are some forms of polyethylene and aramid which will show morphology and retardation colors similar to asbestos minerals. This test must be supplemented with a positive identification test when birefringent fibers are present which can not be excluded by morphology. This test is relatively ineffective for use on fibers less than 1 µm in diameter. For positive confirmation TEM or SEM should be used if no larger bundles or fibers · are visible. #### 4.6. Dispersion Staining Dispersion microscopy or dispersion staining is the method of choice for the identification of asbestos in bulk materials. Becke line enalysis is used by some laboratories and yields the same results as does dispersion staining for asbestos and can be used in lieu of dispersion staining. Dispersion staining is performed on the same platform as the phase-polar analysis with the analyzer and compensator removed. One polarizing element remains to define the direction of the light so that the different indices of refraction of the fibers may be separately determined. Dispersion microscopy is a dark-field technique when used for asbestos. Particles are imaged with scattered light. Light which is unscattered is blocked from reaching the eye either by the back field image mask in a McCrone objective or a back field image mask in the phase condenser. The most convenient method is to use the rotating phase condenser to move an oversized phase ring into place. The ideal size for this ring is for the central disk to be just larger than the objective entry aperture as viewed in the back focal plane. The larger the disk, the less scattered light reaches the eye. This will have the effect of diminishing the intensity of dispersion color and will shift the actual color seen. The colors seen vary even on microscopes from the same manufacturer. This is due to the different bands of wavelength exclusion by different mask sizes. The mask may either reside in the condenser or in the objective back focal plane. It is imperative that the analyst determine by experimentation with asbestos standards what the appropriate colors should be for each asbestos type. The colors depend also on the temperature of the preparation and the exact chemistry of the asbestos. Therefore, some slight differences from the standards should be allowed. This is not a serious problem for commercial asbestos uses. This technique is used for identification of the indices of refraction for fibers by recognition of color. There is no direct numerical readout of the index of refraction. Correlation of color to actual index of refraction is possible by referral to published conversion tables. This is not necessary for the analysis of asbestos. Recognition of appropriate colors along with the proper morphology are deemed sufficient to identify the commercial asbestos minerals. Other techniques including SEM, TEM, and XRD may be required to provide additional information in order to identify other types Make a preparation in the suspected matching high dispersion oil, e.g., n=1.550 for chrysotile. Perform the preliminary tests to determine whether the fibers are birefringent or not. Take note of the morphological character. Wavy fibers are indicative of chrysotile while long, straight, thin, frayed fibers are indicative of amphibole asbestos. This can aid in the selection of the appropriate matching oil. The microscope is set up and the polarization direction is noted as in Section 4.4. Align a fiber with the polarization direction. Note the color. This is the color parallel to the polarizer. Then rotate the fiber rotating the stage 90°
so that the polarization direction is across the fiber. This is the perpendicular position. Again note the color. Both colors must be consistent with standard asbestos minerals in the correct direction for a positive identification of asbestos. If only one of the colors is correct while the other is not, the identification is not positive. If the colors in both directions are bluish-white, the analyst has chosen a matching index oil which is higher than the correct matching oil, e.g. the analyst has used n=1.620 where chrysotile is present. The next lower oil (Section 3.5.) should be used to prepare another specimen. If the color in both directions is yellow-white to straw-yellowwhite, this indicates that the index of the oil is lower than the index of the fiber, e.g. the preparation is in n=1.550 while anthophyllite is present. Select the next higher oil (Section 3.5.) and prepare another slide. Continue in this fashion until a positive identification of all asbestos species precent has been made or all possible asbestos species have been ruled out by negative results in this test. Certain plant fibers can have similar dispersion colors as asbestos. Take care to note and evaluate the morphology of the fibers or remove the plant fibers in pre-preparation. Coating material on the fibers such as carbonate or vinyl may destroy the dispersion color. Usually, there will be some outcropping of fiber which will show the colors sufficient for identification. When this is not the case, treat the sample as described in Section 3.3. and then perform dispersion staining. Some samples will yield to Becke line analysis if they are coated or electron microscopy can be used for identification. #### 5. References - 5.1. Crane, D.T., Asbestos in Air, OSHA method ID160, Revised November 1992. - 5.2. Ford, W.E., Dana's Textbook of Mineralogy; Fourth Ed.; John Wiley and Son, New York, 1950, p. vii. - 5.3. Selikoff, I.J., Lee, D.H.K., Asbestos and Disease, Academic Press, New York, 1978, pp. 3,20. - 5.4. Women Inspectors of Factories. Annual Report for 1898, H.M. Statistical Office, London, p. 170 (1898). - 5.5. Selikoff, I.J., Lee, D.H.K., Asbestos and Disease, Academic Press, New York, 1978, pp. 26,30. - 5.6. Campbell, W.J., et al, Selected Silicate Minerals and Their Asbestiform Varieties, United States Department of the Interior, Bureau of Mines, Information Circular 8751, 1977. - 5.7. Asbestos, Code of Federal Regulations, 29 CFR 1910.1001 and 29 CFR 1926.58. - 5.8. National Emission Standards for Hazardous Air Pollutants; Asbestos NESHAP Revision, Federal Register, Vol. 55, No. 224, 20 November 1990, p. 48410. - 5.9. Ross, M. The Asbestos Minerals: Definitions, Description, Modes of Formation, Physical and Chemical Properties and Health Risk to the Mining Community, Nation Bureau of Standards Special Publication, Washington, D.C., - 5.10. Lilis, R., Fibrous Zeolites and Endemic Mesothelioma in Cappadocia, Turkey, J. Occ Medicine, 1981, 23,(8),548-550. - 5.11. Occupational Exposure to Asbestos— 1972, U.S. Department of Health Education and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, HSM-72-10267. - 5.12. Campbell, W.J., et al, Relationship of Mineral Habit to Size Characteristics for Tremolite Fragments and Fibers, United States Department of the Interior, Bureau of Mines, Information Circular 8367, 1979. - 5.13. Mefford, D., DCM Laboratory, Denver, private communication, July 1987. - 5.14. Deer, W.A., Howie, R.A., Zussman, J., Rock Forming Minerals, Longman, Thetford, UK, 1974. - 5.15. Kerr, P.F., Optical Mineralogy; Third Ed. McGraw-Hill, New York, 1959. - 5.16. Veblen, D.R. (Ed.), Amphiboles and Other Hydrous Pyriboles—Mineralogy, Reviews in Mineralogy, Vol 9A, Michigan, 1982, pp 1–102. - 5.17. Dixon, W.C., Applications of Optical Microscopy in the Analysis of Asbestos and Quartz, ACS Symposium Series. No. 120, Analytical Techniques in Occupational Health Chemistry, 1979. - 5.18. Polarized Light Microscopy, McCrone Research Institute, Chicago, 1976. - 5.19. Asbestos Identification, McCrone Research Institute, G & G printers, Chicago, 1987. - 5.20. McCrone, W.C., Calculation of Refractive Indices from Dispersion Staining Data, The Microscope, No 37, Chicago, 1989. - 5.21. Levadie, B. (Ed.), Asbestos and Other Health Related Silicates, ASTM Technical Publication 834, ASTM, Philadelphia 1982. - 5.22. Steel, E. and Wylie, A., Riordan, P.H. (Ed.), Mineralogical Characteristics of Asbestos, Geology of Asbestos Deposits, pp. 93–101, SME–AIME, 1981. - 5.23. Zussman, J., The Mineralogy of Asbestos, Asbestos: Properties, Applications and Hazards, pp. 45–67 Wiley, 1979. [FR Doc. 94–18863 Filed 8–8–94; 8:45 am] BILLING CODE 4510–28–P